In this paper, a new computational algorithm for the numerical solution of the adjoint equations for the nonlinear optimal control problem is introduced. To this end, the main features of the optimal control theory are briefly reviewed and effectively employed to derive the adjoint equations for the active control of a mechanical system forced by external excitations. A general nonlinear formulation of the cost functional is assumed, and a feedforward (open-loop) control scheme is considered in the analytical structure of the control architecture. By doing so, the adjoint equations resulting from the optimal control theory enter into the formulation of a nonlinear differential-algebraic two-point boundary value problem, which mathematically describes the solution of the motion control problem under consideration. For the numerical solution of the problem at hand, an adjoint-based control optimization computational procedure is developed in this work to effectively and efficiently compute a nonlinear optimal control policy. A numerical example is provided in the paper to show the principal analytical aspects of the adjoint method. In particular, the feasibility and the effectiveness of the proposed adjoint-based numerical procedure are demonstrated for the reduction of the mechanical vibrations of a nonlinear two degrees-of-freedom dynamical system.

References

1.
Bryson
,
A. E.
, and
Ho
,
Y. C.
,
1975
,
Applied Optimal Control—Optimization, Estimation, and Control
,
Taylor and Francis
,
New York
.
2.
Luchini
,
P.
, and
Bottaro
,
A.
,
2014
, “
An Introduction to Adjoint Problems
,”
Annu. Rev. Fluid Mech., Suppl. Append. A
,
46
, pp.
493
517
.
3.
Luchini
,
P.
, and
Bottaro
,
A.
,
2014
, “
Adjoint Equations in Stability Analysis
,”
Annu. Rev. Fluid Mech.
,
46
, pp.
493
517
.
4.
Bewley
,
T. R.
,
2015
,
Numerical Renaissance—Simulation, Optimization and Control
,
Renaissance Press
,
San Diego, CA
, epub.
5.
Bertsekas
,
D. P.
,
2005
,
Dynamic Programming and Optimal Control—Volume I
,
Athena Scientific
,
Belmont, MA
.
6.
Bertsekas
,
D. P.
,
2005
,
Dynamic Programming and Optimal Control—Volume II
,
Athena Scientific
,
Belmont, MA
.
7.
Bellman
,
R. E.
, and
Dreyfus
,
S. E.
,
1962
,
Applied Dynamic Programming
,
Oxford University Press
,
London
.
8.
Bewley
,
T. R.
,
2001
, “
Flow Control—New Challenges for a New Renaissance
,”
Prog. Aerosp. Sci.
,
37
(
1
), pp.
21
58
.
9.
Kim
,
J.
, and
Bewley
,
T. R.
,
2007
, “
A Linear Systems Approach to Flow Control
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
383
417
.
10.
Giles
,
M. B.
, and
Pierce
,
N. A.
,
2000
, “
An Introduction to the Adjoint Approach to Design
,”
J. Flow, Turbul., Combust.
,
65
, pp.
393
415
.
11.
Giannetti
,
F.
, and
Luchini
,
P.
,
2006
, “
Leading-Edge Receptivity by Adjoint Methods
,”
J. Fluid Mech.
,
547
, pp.
21
53
.
12.
Giannetti
,
F.
,
Camarri
,
S.
, and
Luchini
,
P.
,
2010
, “
Structural Sensitivity of the Secondary Instability in the Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
651
, pp.
319
337
.
13.
Bewley
,
T.
,
Luchini
,
P.
, and
Pralits
,
J.
,
2016
, “
Methods for the Solution of Large Optimal Control Problems That Bypass Open-Loop Model Reduction
,”
Meccanica
,
51
(
12
), pp.
2997
3014
.
14.
Schmidt-Wetekam
,
C.
,
Zhang
,
D.
,
Hughes
,
R.
, and
Bewley
,
T. R.
,
2007
, “
Design, Optimization, and Control of a New Class of Reconfigurable Hopping Rovers
,”
46th IEEE Conference on Decision and Control
, New Orleans, LA, Dec. 12–14, pp.
5150
5155
.
15.
Summers
,
S.
, and
Bewley
,
T. R.
,
2007
, “
MPDopt—A Versatile Toolbox for Adjoint-Based Model Predictive Control of Smooth and Switched Nonlinear Dynamic Systems
,”
46th IEEE Conference on Decision and Control
, New Orleans, LA, Dec. 12–14, pp.
4785
4790
.
16.
Bewley
,
T. R.
,
Temam
,
R.
, and
Zianed
,
M.
,
2000
, “
A General Framework for Robust Control in Fluid Mechanics
,”
Physica D
,
138
(
3–4
), pp.
360
392
.
17.
Mariti
,
L.
,
Belfiore
,
N. P.
,
Pennestri
,
E.
, and
Valentini
,
P. P.
,
2011
, “
Comparison of Solution Strategies for Multibody Dynamics Equations
,”
Int. J. Numer. Methods Eng.
,
88
(
7
), pp.
637
656
.
18.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1995
,
Nonlinear Oscillations
,
Wiley
,
New York
.
19.
Antman
,
S. S.
,
2005
,
Nonlinear Problems of Elasticity
, 2nd ed.,
Springer
,
New York
.
20.
Meirovitch
,
L.
,
2010
,
Fundamentals of Vibrations
,
McGraw Hill
,
Boston
.
21.
Ashour
,
O. N.
, and
Nayfeh
,
A. H.
,
2002
, “
Adaptive Control of Flexible Structures Using a Nonlinear Vibration Absorber
,”
J. Nonlinear Dyn.
,
28
, pp.
309
322
.
22.
Siciliano
,
B.
,
Sciavicco
,
L.
,
Villani
,
L.
, and
Oriolo
,
G.
,
2010
,
Robotics—Modeling, Planning and Control
,
Springer
,
London
.
23.
Khalil
,
H. K.
,
2001
,
Nonlinear Systems
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
24.
Hagedorn
,
P.
, and
DasGupta
,
A.
,
2007
,
Vibrations and Waves in Continuous Mechanical Systems
,
Wiley
,
Chichester, UK
.
25.
Preumont
,
A.
,
2011
,
Vibration Control of Active Structures—An Introduction
, 3rd ed.,
Springer
,
Berlin
.
26.
Bauchau
,
O. A.
, and
Craig
,
J. I.
,
2009
,
Structural Analysis—With Applications to Aerospace Structures
,
Springer
,
New York, NY
.
27.
Hodges
,
D. H.
, and
Pierce
,
G. A.
,
2002
,
Introduction to Structural Dynamics and Aeroelasticity
,
Cambridge University Press
,
Cambridge, UK
.
28.
Genta
,
G.
,
2009
,
Vibration Dynamics and Control
,
Springer
,
New York
.
29.
Inman
,
D. J.
,
2006
,
Vibration with Control
,
Wiley
,
Chichester, UK
.
30.
Slotine
,
J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
31.
Cheli
,
F.
, and
Diana
,
G.
,
2015
,
Advanced Dynamics of Mechanical Systems
,
Springer
,
London
.
32.
Gawronski
,
W. K.
,
2004
,
Advanced Structural Dynamics and Active Control of Structures
,
Springer
,
New York
.
33.
Skelton
,
R. E.
, and
de Oliveira
,
M. C.
,
2009
,
Tensegrity Systems
,
Springer
,
New York
.
34.
Juang
,
J. N.
, and
Phan
,
M. Q.
,
2004
,
Identification and Control of Mechanical Systems
,
Cambridge University Press
,
Cambridge, UK
.
35.
Seifried
,
R.
,
2014
,
Dynamics of Underactuated Multibody Systems—Modeling, Control, and Optimal Design
,
Springer
,
London
.
36.
Zhong
,
W. X.
,
2004
,
Duality System in Applied Mechanics and Optimal Control
,
Kluwer Academic Publishers
,
New York
.
37.
Inman
,
D. J.
,
2008
,
Engineering Vibration
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
38.
Al Majid
,
A.
, and
Dufour
,
R.
,
2002
, “
Formulation of a Hysteretic Restoring Force Model—Application to Vibration Isolation
,”
J. Nonlinear Dyn.
,
27
(
1
), pp.
69
85
.
39.
Udwadia
,
F. E.
,
2013
, “
A New Approach to Stable Optimal Control of Complex Nonlinear Dynamical Systems
,”
ASME J. Appl. Mech.
,
81
(
3
), p.
031001
.
40.
Raibert
,
M. H.
, and
Craig
,
J. J.
,
1981
, “
Hybrid Position-Force Control of Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
103
(
2
), pp.
126
133
.
41.
Gorinevsky
,
D.
,
Formalsky
,
A.
, and
Schneider
,
A.
,
1997
,
Force Control of Robotics Systems
,
CRC Press
,
Boca Raton, FL
.
42.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2005
,
Robot Modeling and Control
,
Wiley
,
New York
.
43.
Lewis
,
F. L.
,
Dawson
,
D. M.
, and
Abdallah
,
C. T.
,
2003
,
Robot Manipulator Control—Theory and Practice
,
CRC Press
,
Boca Raton, FL
.
44.
Guida
,
D.
, and
Pappalardo
,
C. M.
,
2015
, “
Control Design of an Active Suspension System for a Quarter-Car Model With Hysteresis
,”
J. Vib. Eng. Technol.
,
3
(
3
), pp.
277
299
.
45.
Pappalardo
,
C. M.
,
2015
, “
A Natural Absolute Coordinate Formulation for the Kinematic and Dynamic Analysis of Rigid Multibody Systems
,”
J. Nonlinear Dyn.
,
81
(
4
), pp.
1841
1869
.
46.
Pappalardo
,
C. M.
,
Patel
,
M. D.
,
Tinsley
,
B.
, and
Shabana
,
A. A.
,
2015
, “
Contact Force Control in Multibody Pantograph/Catenary Systems
,”
Proc. Inst. Mech. Eng., Part K
,
230
(
4
), pp.
307
328
.
47.
Pappalardo
,
C. M.
,
Yu
,
Z.
,
Zhang
,
X.
, and
Shabana
,
A. A.
,
2015
, “
Rational ANCF Thin Plate Finite Element
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051009
.
48.
Ogata
,
K.
,
2010
,
Modern Control Engineering
, 5th ed.,
Prentice Hall
,
Boston
.
49.
Nise
,
N. S.
,
2011
,
Control System Engineering
, 6th ed.,
Wiley
,
New York
.
50.
Vincent
,
T. L.
, and
Grantham
,
J. W.
,
1997
,
Nonlinear and Optimal Control Systems
,
Wiley
,
New York
.
51.
Troutman
,
J. L.
,
1995
,
Variational Calculus and Optimal Control—Optimization With Elementary Convexity
, 2nd ed.,
Springer
,
New York
.
52.
Betts
,
J. T.
,
2010
,
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
, 2nd ed.,
Siam
,
Philadelphia, PA
.
53.
Liberzon
,
D.
,
2012
,
Calculus of Variations and Optimal Control Theory—A Concise Introduction
,
Princeton University Press
,
Princeton, NJ
.
54.
Clarke
,
F.
,
2013
,
Functional Analysis, Calculus of Variation and Optimal Control
,
Springer
,
London
.
55.
Stengel
,
R. F.
,
1986
,
Optimal Control and Estimation
,
Dover
,
New York
.
56.
Lewis
,
F. L.
,
Vrabie
,
D. L.
, and
Syrmos
,
V. L.
,
2012
,
Optimal Control
, 3rd ed.,
Wiley
,
New York
.
57.
Bement
,
M. T.
, and
Bewley
,
T. R.
,
2008
, “
Excitation Design for Damage Detection Using Iterative Adjoint-Based Optimization—Part 1: Method Development
,”
Mech. Syst. Signal Process.
,
23
(
3
), pp.
783
793
.
58.
Bement
,
M. T.
, and
Bewley
,
T. R.
,
2008
, “
Excitation Design for Damage Detection Using Iterative Adjoint-Based Optimization—Part 2: Experimental Demonstration
,”
Mech. Syst. Signal Process.
,
23
(
3
), pp.
794
803
.
59.
Kirk
,
D. E.
,
1970
,
Optimal Control Theory—An Introduction
,
Dover
,
Mineola, NY
.
60.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
2007
,
Numerical Recipes—The Art of Scientific Computing
, 3rd ed.,
Cambridge University Press
,
Cambridge, UK
.
61.
Snyman
,
J. A.
,
2005
,
Practical Mathematical Optimization—An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms
,
Springer
,
New York
.
62.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
, 4th ed.,
Cambridge University Press
,
Cambridge, UK
.
63.
Meirovitch
,
L.
,
2010
,
Methods of Analytical Dynamics
,
Dover
,
Mineola, NY
.
64.
Lanczos
,
C.
,
1986
,
The Variational Principles of Mechanics
, 4th ed.,
Dover
,
Mineola, NY
.
65.
Goldstein
,
H.
,
Poole
,
C. P.
, and
Safko
,
J. L.
,
2013
,
Classical Mechanics
, 3rd ed.,
Addison Wesley
,
San Francisco, CA
.
66.
Fantoni
,
I.
, and
Lozano
,
R.
,
2001
,
Non-Linear Control for Underactuated Mechanical Systems
,
Springer
,
London
.
67.
Guida
,
D.
, and
Pappalardo
,
C. M.
,
2014
, “
Forward and Inverse Dynamics of Nonholonomic Mechanical Systems
,”
Meccanica
,
49
(
7
), pp.
1547
1559
.
68.
Nocedal
,
J.
, and
Wright
,
S.
,
2006
,
Numerical Optimization
, 2nd ed.,
Springer
,
New York
.
69.
Pappalardo
,
C. M.
, and
Guida
,
D.
,
2016
, “
Control of Nonlinear Vibrations Using the Adjoint Method
,”
Meccanica
(in press).
70.
Kulkarni
,
S.
,
Pappalardo
,
C. M.
, and
Shabana
,
A. A.
,
2016
, “
Pantograph/Catenary Contact Formulations
,”
ASME J. Vib. Acoust.
,
139
(
1
), p.
011010
.
71.
Pappalardo
,
C. M.
,
Wallin
,
M.
, and
Shabana
,
A. A.
,
2016
, “
A New ANCF/CRBF Fully Parametrized Plate Finite Element
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031008
.
72.
Pappalardo
,
C. M.
,
Wang
,
T.
, and
Shabana
,
A. A.
,
2016
, “
On the Formulation of the Planar ANCF Triangular Finite Elements
,”
J. Nonlinear Dyn.
(submitted).
73.
Pappalardo
,
C. M.
,
Wang
,
T.
, and
Shabana
,
A. A.
,
2016
, “
New ANCF Tetrahedral Finite Elements for the Nonlinear Dynamics of Flexible Structures
,”
J. Nonlinear Dyn.
(submitted).
74.
Guida
,
D.
, and
Pappalardo
,
C. M.
,
2009
, “
Sommerfeld and Mass Parameter Identification of Lubricated Journal Bearing
,”
WSEAS Trans. Appl. Theor. Mech.
,
4
(
4
), pp.
205
214
.
75.
Guida
,
D.
,
Nilvetti
,
F.
, and
Pappalardo
,
C. M.
,
2009
, “
Parameter Identification of a Two Degrees of Freedom Mechanical System
,”
Int. J. Mech.
,
3
(
2
), pp.
23
30
.
76.
Guida
,
D.
,
Nilvetti
,
F.
, and
Pappalardo
,
C. M.
,
2009
, “
Instability Induced by Dry Friction
,”
Int. J. Mech.
,
3
(
3
), pp.
44
51
.
77.
Guida
,
D.
,
Nilvetti
,
F.
, and
Pappalardo
,
C. M.
,
2009
, “
Dry Friction Influence on Cart Pendulum Dynamics
,”
Int. J. Mech.
,
3
(
2
), pp.
31
38
.
78.
Guida
,
D.
, and
Pappalardo
,
C. M.
,
2013
, “
A New Control Algorithm for Active Suspension Systems Featuring Hysteresis
,”
FME Trans.
,
41
(
4
), pp.
285
290
.
You do not currently have access to this content.