Steer-by-wire (SBW) systems in a passenger car can improve vehicle steering capability and design flexibility by replacing the mechanical linkage between the steering wheel and front wheels by a control circuit. The steering controller, however, should provide good performance in response to driver's input signal. This includes fast response, absence of overshoot or oscillatory behavior, and good accuracy with minimal steady-state error. In this paper, an optimal control strategy based on observed system states is proposed and implemented on an electrohydraulic SBW system of a passenger car. First, a linear mathematical model is developed using gray-box system identification techniques. A standard input signal, pseudorandom binary sequence (PRBS), is designed to stimulate the system in the concerned bandwidth. Then, a linear-quadratic regulator (LQR) together with a full-state system observer is designed. Based on simulation, the LQR parameters and the observer poles are chosen to satisfy the aforementioned performance criteria for good steering. Finally, the control strategy is applied in a real-time environment to test the tracking capability, where the system is given high-rate reference signals (relative to the human rate of steering). The results show that the steering system tracks the reference signal with high accuracy even in the existence of high external force disturbances.

References

1.
Nguyen
,
B.-H.
, and
Ryu
,
J.-H.
,
2009
, “
Direct Current Measurement Based Steer by Wire Systems for Realistic Driving Feeling
,”
IEEE International Symposium on Industrial Electronics
(
ISIE
), Seoul, South Korea, July 5–8, pp.
1023
1028
.
2.
Jang
,
S.
,
Park
,
T.
, and
Han
,
C.
,
2003
, “
A Control of Vehicle Using Steer-by-Wire System With Hardware-in-the-Loop-Simulation System
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Kobe, Japan, July 20–24, pp.
389
394
.
3.
Daher
,
N.
, and
Ivantysynova
,
M.
,
2014
, “
A Steer-by-Wire System That Enables Remote and Autonomous Operation
,”
SAE
Paper No. 2014-01-2404.
4.
Karpenko
,
M.
, and
Sepehri
,
N.
,
2009
, “
Hardware-in-the-Loop Simulator for Research on Fault Tolerant Control of Electro-Hydraulic Actuators in a Flight Control Application
,”
Mechatronics
,
19
(
7
), pp.
1067
1077
.
5.
Wu
,
M.
, and
Shih
,
M.
,
2003
, “
Simulated and Experimental Study of Hydraulic Anti-Lock Braking System Using Sliding-Mode PWM Control
,”
Mechatronics
,
13
(
4
), pp.
331
351
.
6.
Sam
,
Y.
,
Osman
,
J.
, and
Ghani
,
M.
,
2004
, “
A Class of Proportional-Integral Sliding Mode Control With Application to Active Suspension System
,”
Syst. Control Lett.
,
51
(
3–4
), pp.
217
223
.
7.
Chiang
,
M.
, and
Huang
,
C.
,
2004
, “
Experimental Implementation of Complex Path Tracking Control for Large Robotic Hydraulic Excavators
,”
Int. J. Adv. Manuf. Technol.
,
23
(
1–2
), pp.
126
132
.
8.
Renn
,
J.
, and
Tsai
,
C.
,
2005
, “
Development of an Unconventional Electro-Hydraulic Proportional Valve With Fuzzy-Logic Controller for Hydraulic Presses
,”
Int. J. Adv. Manuf. Technol.
,
26
(
1–2
), pp.
10
16
.
9.
Chiang
,
M.
,
Yeh
,
Y.
,
Yang
,
F.
, and
Chen
,
Y.
,
2005
, “
Integrated Control of Clamping Force and Energy-Saving in Hydraulic Injection Moulding Machines Using Decoupling Fuzzy Sliding Mode Control
,”
Int. J. Adv. Manuf. Technol.
,
27
(
1–2
), pp.
53
62
.
10.
Jha
,
S.
, and
Jain
,
V.
,
2004
, “
Design and Development of the Magnetorheological Abrasive Flow Finishing (MRAFF) Process
,”
Int. J. Mach. Tools Manuf.
,
44
(
10
), pp.
1019
1029
.
11.
Merritt
,
H. E.
,
1967
,
Hydraulic Control Systems
,
Wiley
,
New York
.
12.
Kroll
,
A.
,
1999
, “
Grey-Box Models and Their Application to a Steel Mill
,” International Conference on Computational Intelligence for Modelling, Control and Automation (CIMCA), Vienna, Austria, Feb. 17–19, pp.
340
345
.
13.
Plummer
,
A. R.
, and
Vaughan
,
A. D.
,
1997
, “
Decoupling Pole-Placement Control, With Application to a Multi-Channel Electro-Hydraulic Servo System
,”
Control Eng. Pract.
,
5
(
3
), pp.
313
323
.
14.
Lim
,
T.
,
1997
, “
Pole Placement Control of an Electrohydraulic Servo Motor
,” IEEE
Second International Conference on Power Electronics and Drive Systems
(
PEDS
), Singapore, May 26–29, pp.
350
356
.
15.
Ishak
,
N.
,
Tajjudin
,
M.
,
Ismail
,
H.
,
Rahiman
,
M.
,
Sam
,
Y.
, and
Adnan
,
R.
,
2012
, “
PID Studies on Position Tracking Control of an Electro-Hydraulic Actuator
,”
Int. J. Control Sci. Eng.
,
2
(
5
), pp.
120
126
.
16.
Bobrow
,
J. E.
, and
Lum
,
K.
,
1996
, “
Adaptive, High Bandwidth Control of a Hydraulic Actuator
,”
ASME J. Dyn. Syst. Meas. Control
,
118
(
4
), pp.
714
720
.
17.
Seo
,
J.
,
Venugopal
,
R.
, and
Kenne
,
J.-P.
,
2007
, “
Feedback Linearization Based Control of a Rotational Hydraulic Drive
,”
Control Eng. Pract.
,
15
(
12
), pp.
1495
1507
.
18.
Mintsa
,
H.
,
Venugopal
,
R.
,
Kene
,
J.
, and
Belleau
,
C.
,
2012
, “
Feedback Linearization-Based Position Control of an Electro-Hydraulic Servo System With Supply Pressure Uncertainty
,”
IEEE Trans. Control Syst. Technol.
,
20
(
4
), pp.
1092
1099
.
19.
Vossoughi
,
G.
, and
Donath
,
M.
,
1995
, “
Dynamic Feedback Linearization for Electro-Hydraulically Actuated Control Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
117
(
4
), pp.
468
477
.
20.
Yang
,
L.
,
Yang
,
S.
, and
Burton
,
R.
,
2013
, “
Modeling and Robust Discrete-Time Sliding-Mode Control Design for a Fluid Power Electrohydraulic Actuator (EHA) System
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
1
10
.
21.
Cheng
,
G.
, and
Shuangxia
,
P.
,
2008
, “
Adaptive Sliding Mode Control of Electro-Hydraulic System With Nonlinear Unknown Parameters
,”
Control Eng. Pract.
,
16
(
11
), pp.
1275
1284
.
22.
Tang
,
R.
, and
Zhang
,
Q.
,
2011
, “
Dynamic Sliding Mode Control Scheme for Electro-Hydraulic Position Servo System
,”
Procedia Eng.
,
24
, pp.
28
32
.
23.
Kim
,
H. M.
,
Park
,
S. H.
,
Song
,
J. H.
, and
Kim
,
J. S.
,
2010
, “
Robust Position Control of Electro-Hydraulic Actuator Systems Using the Adaptive Back-Stepping Control Scheme
,”
J. Syst. Control Eng.
,
224
, pp.
737
746
.
24.
Ahn
,
K. K.
,
Doan
,
N. C. N.
, and
Maolin
,
J.
,
2014
, “
Adaptive Backstepping Control of an Electrohydraulic Actuator
,”
IEEE Trans. Mechatron.
,
19
(
3
), pp.
987
995
.
25.
Tri
,
N. M.
,
Nam
,
D. N. C.
,
Park
,
H. G.
, and
Ahn
,
K. K.
,
2015
, “
Trajectory Control of an Electro Hydraulic Actuator Using an Iterative Backstepping Control Scheme
,”
Mechatronics
,
29
, pp.
96
102
.
26.
Bonchis
,
A.
,
Corke
,
P. I.
,
Rye
,
D. C.
, and
Ha
,
Q. P.
,
2001
, “
Variable Structure Methods in Hydraulic Servo Systems Control
,”
Automatica
,
37
(
4
), pp.
589
595
.
27.
Wonhee
,
K.
,
Donghoon
,
S.
,
Daehee
,
W.
, and
Chung
,
C. C.
,
2013
, “
Disturbance-Observer-Based Position Tracking Controller in the Presence of Biased Sinusoidal Disturbance for Electro-Hydraulic Actuators
,”
IEEE Trans. Control Syst. Technol.
,
21
(
6
), pp.
2290
2298
.
28.
Guo
,
K.
,
Wei
,
J.
, and
Fang
,
J.
,
2015
, “
Position Tracking Control of Electro-Hydraulic Single-Rod Actuator Based on an Extended Disturbance Observer
,”
Mechatronics
,
27
, pp.
47
56
.
29.
Knohl
,
T.
, and
Unbehauen
,
H.
,
2000
, “
Adaptive Position Control of Electro-Hydraulic Servo Systems Using ANN
,”
Mechatronics
,
10
(
1–2
), pp.
127
143
.
30.
Zulfatman
, and
Rahmat
,
M. F.
,
2009
, “
Application of Self-Tuning Fuzzy PID Controller on Industrial Hydraulic Actuator Using System Identification Approach
,”
Int. J. Smart Sens. Intell. Syst.
,
2
(
2
), pp.
246
261
.http://s2is.org/Issues/v2/n2/papers/paper5.pdf
31.
Cetin
,
S.
, and
Akkaya
,
A.
,
2010
, “
Simulation and Hybrid Fuzzy-PID Control for Positioning of a Hydraulic System
,”
Nonlinear Dyn.
,
61
(
3
), pp.
465
476
.
32.
Ghazali
,
R.
,
Sam
,
Y.
,
Rahmat
,
M.
,
Zulfatman
, and
Hashim
,
A.
,
2012
, “
Simulation and Experimental Studies on Perfect Tracking Optimal Control of an Electrohydraulic Actuator System
,”
J. Control Sci. Eng.
,
2012
, p.
670635
.
33.
Liccardo
,
F.
,
Strano
,
S.
, and
Terzo
,
M.
,
2013
, “
Optimal Control Using State-Dependent Riccati Equation (SDRE) for a Hydraulic Actuator
,” The World Congress on Engineering (
WCE
), London, July 3–5, pp.
2003
2007
.http://www.iaeng.org/publication/WCE2013/WCE2013_pp2003-2007.pdf
34.
Çimen
,
T.
,
2012
, “
Survey of State-Dependent Riccati Equation in Nonlinear Optimal Feedback Control Synthesis
,”
AIAA J. Guid., Control, Dyn.
,
35
(
4
), pp.
1025
1047
.
35.
Fairweather
,
A.
,
Foster
,
M.
, and
Stone
,
D.
,
2011
, “
Battery Parameter Identification With Pseudo Random Binary Sequence Excitation (PRBS)
,”
J. Power Sources
,
196
(
22
), pp.
9398
9406
.
36.
Davies
,
W.
,
1970
,
System Identification for Self-Adaptive Control
,
Wiley-Interscience
,
London
.
37.
Pintelon
,
R.
, and
Schoukens
,
J.
,
2001
,
System Identification: A Frequency Domain Approach
,
IEEE Press
,
New York
.
38.
Reuter
,
H.
,
1995
,
Zur Identifikation Nichtlinearer Systemmodelle mit Wenig A-Priori-Informationen
(Fortschritt-Berichte, Reihe 8, Nr. 471),
VDI-Verlag
,
Düsseldorf, Germany
.
39.
Naidu
,
D.
,
2002
,
Optimal Control Systems
,
CRC Press
,
Boca Raton, FL
.
40.
Ogata
,
K.
,
2010
,
Modern Control Engineering
, 5th ed.,
Prentice Hall
PTR, Upper Saddle River, NJ
.
41.
Kebschull
,
B.
,
Ishii
,
K.
, and
Ernst
,
M.
,
2003
, “
Rollover Resistance Test Procedure Involving Maximum Roll Momentum
,”
18th International Technical Conference on the Enhanced Safety of Vehicles
(
ESV
), Nagoya, Japan, May 19–22, pp. 1–9.https://www-nrd.nhtsa.dot.gov/pdf/esv/esv18/CD/proceed/00198.pdf
You do not currently have access to this content.