In this paper, a very easy, numerically stable and computationally efficient method is presented, which allows the modeling and simulation of a flexible robot with high precision. The proposed method is developed under the hypotheses of flexible links having varying cross sections, of large link deformations and of time-varying geometrical and/or physical parameters of both the robot and the end-effector. This methodology uses the same approach of the modeling of rigid robots, after suitably and fictitiously subdividing each link of the robot into sublinks, rigid to the aim of the calculus of the inertia matrix and flexible to the aim of the calculus of the elastic matrix. The static and dynamic precision of the method is proved with interesting theorems, examples and some experimental tests. Finally, the method is used to model, control, and simulate a crane, composed of three flexible links and a cable with varying length, carrying a body with a variable mass.

References

1.
Feliu
,
V.
,
García
,
A.
, and
Somolinos
,
J. A.
,
2001
, “
Gauge-Based Tip Position Control of a New Three-Degree-of-Freedom Flexible Robot
,”
Int. J. Rob. Res.
,
20
(
8
), pp.
660
675
.
2.
Ailon
,
A.
,
2004
, “
Asymptotic Stability in a Flexible-Joint Robot With Model Uncertainty and Multiple Time Delays in Feedback
,”
J. Franklin Inst.
,
341
(
6
), pp.
519
531
.
3.
Al-Yahmadi
,
A. S.
,
Abdo
,
J.
, and
Hsia
,
T. C.
,
2007
, “
Modelling and Control of Two Manipulators Handling a Flexible Object
,”
J. Franklin Inst.
,
344
(
5
), pp.
349
361
.
4.
Axelsson
,
P.
,
Karlsson
,
R.
, and
Norrlöf
,
M.
,
2012
, “
Bayesian State Estimation of a Flexible Industrial Robot
,”
Control Eng. Pract.
,
20
(
11
), pp.
1220
1228
.
5.
Balas
,
M. J.
,
1978
, “
Feedback Control of Flexible Systems
,”
IEEE Trans. Autom. Control
,
23
(
4
), pp.
673
679
.
6.
Bauchau
,
O.
,
2011
,
Flexible Multibody Dynamics
,
Dordrecht
,
The Netherlands/New York, Springer
.
7.
Blevins
,
R.
,
2001
,
Formulas for Natural Frequency and Mode Shape
,
Krieger Publishing Company
,
Malabarm, FL
.
8.
Book
,
W. J.
,
1993
, “
Controlled Motion in an Elastic World
,”
ASME J. Dyn. Syst. Meas. Control
,
115
, pp.
252
260
.
9.
Book
,
W. J.
,
Maizza-Neto
,
O.
, and
Whitney
,
D. E.
,
1975
, “
Feedback Control of Two-Beam Two-Joint Systems With Distributed Flexibility
,”
ASME J. Dyn. Syst. Meas. Control
,
97
(
4
), pp.
424
431
.
10.
Bouzgarrou
,
B. C.
,
Ray
,
P.
, and
Gogu
,
G.
,
2005
, “
New Approach for Dynamic Modelling of Flexible Manipulators
,”
J. Multibody Dyn., Part K
,
219
(
3
), pp.
285
298
.
11.
Boyer
,
F.
,
Glandais
,
N.
, and
Khalil
,
W.
,
2002
, “
Flexible Multibody Dynamics Based on a Nonlinear Euler Bernoulli Kinematics
,”
Int. J. Numer. Methods Eng.
,
54
(
1
), pp.
27
59
.
12.
Boyer
,
F.
, and
Khalil
,
W.
,
1999
, “
Kinematic Model of a Multi-Beam Structure Undergoing Large Elastic Displacement and Rotations. Part One: Model of an Isolated Beam
,”
J. Mech. Mach. Theory
,
34
(
2
), pp.
205
222
.
13.
Boyer
,
F.
,
Khalil
,
W.
,
Benosman
,
M.
, and
LeVey
,
G.
,
2007
, “
Modeling and Control of Flexible Robots
,”
Robot Manipulators. Modeling, Performance, Analysis and Control
(Control Systems, Robotics and Manufacturing Series),
E.
Dombre
and
W.
Khalil
, eds.,
ISTE
,
Newport Beach, CA
, pp.
337
394
.
14.
Boyer
,
F.
, and
Khalil
,
W.
,
1998
, “
An Efficient Calculation of the Flexible Manipulator Inverse Dynamics
,”
Int. J. Rob. Res.
,
17
(
3
), pp.
282
293
.
15.
Briot
,
S.
, and
Khalil
,
W.
,
2014
, “
Recursive and Symbolic Calculation of the Elastodynamic Model of Flexible Parallel Robots
,”
Int. J. Rob. Res.
,
33
(
3
), pp.
469
483
.
16.
Chait
,
Y.
,
Miklavcic
,
V.
,
Maccluer
,
C. R.
, and
Radcliffe
,
C. J.
,
1990
, “
A Natural Modal Expansion for the Flexible Robot Arm Problem Via a Self-Adjoint Formulation
,”
IEEE Trans. Rob. Autom.
,
6
(
5
), pp.
601
603
.
17.
Chedmail
,
P.
,
Aoustin
,
Y.
, and
Chevallereau
,
C.
,
1991
, “
Modeling and Control of Flexible Robots
,”
Int. J. Numer. Methods Eng.
,
32
(
8
), pp.
1595
1619
.
18.
De Angelis
,
F.
,
2012
, “
On the Structural Response of Elasto/Viscoplastic Materials Subject to Time-Dependent Loadings
,”
Struct. Durability Health Monit.
,
8
(
4
), pp.
341
358
.
19.
De Luca
,
A.
,
1998
, “
Control Problems in Robotics and Automation
,”
Trajectory Control of Flexible Manipulators
(Lecture Notes in Control and Information Sciences), Vol.
230
,
Springer Verlag
,
London
, pp.
83
104
.
20.
Gorade
,
S. K.
,
Kurode
,
S. R.
, and
Gandhi
,
P. S.
,
2014
, “
Modeling and Sliding Mode Control of Flexible Structure
,”
14th International Conference on Control, Automation and Systems
,
KINTEX
, Gyeonggi-do, Korea, pp.
787
792
.
21.
Han
,
S. M.
,
Benorya
,
H.
, and
Wei
,
T.
,
1999
, “
Dynamics of Transversely Vibrating Beams Using Four Engineering Theories
,”
J. Sound Vib.
,
225
(
5
), pp.
935
988
.
22.
Hasting
,
G. G.
, and
Book
,
W. J.
,
1987
, “
A Linear Dynamic Model for Flexible Robot Manipulators
,”
IEEE Control Syst. Mag.
,
7
(
1
), pp.
61
64
.
23.
Hou
,
H.
, and
Tsui
,
S.-K.
,
2003
, “
A Feedback Control and a Simulation of a Torsional Elastic Robot Arm
,”
Appl. Math. Comput.
,
142
(
2–3
), pp.
389
407
.
24.
Khadem
,
S. E.
, and
Pirmohammadi
,
A. A.
,
2003
, “
Analytical Development of Dynamic Equations of Motion for a Three-Dimensional Flexible Link Manipulator With Revolute and Prismatic Joints
,”
IEEE Trans. Syst. Man Cybern.
,
33
(
2
), pp.
237
249
.
25.
Kumar
,
A.
,
Pathak
,
V.
, and
Sukavanam
,
N.
,
2013
, “
Trajectory Control of a Two DOF Rigid–Flexible Space Robot by a Virtual Space Vehicle
,”
Rob. Auton. Syst.
,
61
(
5
), pp.
473
482
.
26.
Li
,
C. J.
, and
Sankar
,
T. S.
,
1993
, “
Systematic Methods for Efficient Modelling and Dynamics Computation of Flexible Robot Manipulators
,”
IEEE Trans. Syst. Man Cybern.
,
23
(
1
), pp.
77
95
.
27.
Liu
,
S.
,
Wu
,
L.
, and
Lu
,
Z.
,
2007
, “
Impact Dynamics and Control of a Flexible Dual-Arm Space Robot Capturing an Object
,”
Appl. Math. Comput.
,
185
(
2
), pp.
1149
1159
.
28.
Macchelli
,
A.
,
Melchiorri
,
C.
, and
Stramigioli
,
S.
,
2007
, “
Port-Based Modelling of a Flexible Link
,”
IEEE Trans. Rob.
,
23
(
4
), pp.
650
660
.
29.
Madani
,
M.
, and
Moallem
,
M.
,
2011
, “
Hybrid Position/Force Control of a Flexible Parallel Manipulator
,”
J. Franklin Inst.
,
348
(
6
), pp.
999
1012
.
30.
Megson
,
T. H.
,
2005
,
Structural and Stress Analysis
,
Butterworth-Heinemann
,
Oxford, UK
.
31.
Moberg
,
S.
,
2010
, “
Modelling and Control of Flexible Manipulators
,”
Ph.D. thesis
, Department of Electrical Engineering, Linköping University, Linköping, Sweden.
32.
Moberg
,
S.
,
Wernholt
,
E.
,
Hanssen
,
S.
, and
Brogårdh
,
T.
,
2014
, “
Modeling and Parameter Estimation of Robot Manipulators Using Extended Flexible Joint Models
,”
ASME J. Dyn. Syst. Meas., Control
,
136
(
3
), p.
031005
.
33.
Pai
,
M.-C.
,
2012
, “
Robust Input Shaping Control for Multi-Mode Flexible Structures Using Neuro-Sliding Mode Output Feedback Control
,”
J. Franklin Inst.
,
349
(
3
), pp.
1283
1303
.
34.
Patil
,
O.
, and
Gandhi
,
P.
,
2014
, “
On the Dynamics and Multiple Equilibria of an Inverted Flexible Pendulum With Tip Mass on a Cart
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
4
), p.
041017
.
35.
Robinett
,
R. D.
,
Dohrmann
,
C.
,
Eisler
,
G. R.
,
Feddema
,
J.
,
Parker
,
G. G.
,
Wilson
,
D. G.
, and
Stokes
,
D.
,
2002
,
Flexible Robot Dynamics and Controls
,
Kluver Academic/Plenum Publishers
,
New York
.
36.
Schäffer
,
A. A.
,
Ott
,
C.
, and
Hirzinger
,
G.
,
2007
, “
A Unified Passivity Based Control Framework for Position, Torque and Impedance Control of Flexible Joint Robots
,”
Int. J. Rob. Res.
,
26
(
1
), pp.
23
39
.
37.
Sueur
,
C.
, and
Dauphin-Tanguy
,
G.
,
1992
, “
Bond-Graph Modeling of Flexible Robots: The Residual Flexibility
,”
J. Franklin Inst.
,
329
(
6
), pp.
1109
1128
.
38.
Theodore
,
R. J.
, and
Ghosal
,
A.
,
2009
, “
Energy Minimization Approach for a Two-Link Flexible Manipulator
,”
J. Vib. Control
,
15
, pp.
497
526
.
39.
Usoro
,
P. B.
,
Nadira
,
R.
, and
Mahil
,
S.
,
1986
, “
A Finite Element/Lagrangian Approach to Modelling Lightweight Flexible Manipulators
,”
ASME J. Dyn. Syst. Meas. Control
,
108
(
3
), pp.
198
205
.
40.
Van Auken
,
R. M.
,
2015
, “
Development and Comparison of Laplace Domain Models for Nonslender Beams and Application to a Half-Car Model With Flexible Body
,”
ASME J. Dyn. Syst. Meas. Control.
,
137
(
7
), p.
071001
.
41.
Wang
,
D.
, and
Vidyasagar
,
M.
,
1992
, “
Modelling of a Class of Multilink Manipulators With the Last Link Flexible
,”
IEEE Trans. Rob. Autom.
,
8
(
1
), pp.
33
41
.
42.
Wang
,
G.
,
Li
,
Y. F.
, and
Xu
,
W. L.
,
2000
, “
Regularization-Based Recovery Scheme for Inverse Dynamics of High-Speed Flexible Beams
,”
Appl. Math. Comput.
,
115
(
2–3
), pp.
161
175
.
43.
Wang
,
J.
,
McKinley
,
P. K.
, and
Tan
,
X.
,
2014
, “
Dynamic Modeling of Robotic Fish With a Base-Actuated Flexible Tail
,”
ASME J. Dyn. Syst. Meas. Control.
,
137
(
1
), p.
011004
.
44.
Yang
,
J.
,
Lian
,
F.
, and
Fu
,
L.
,
1997
, “
Nonlinear Adaptive Control for Flexible-Link Manipulators
,”
IEEE Trans. Rob. Autom.
,
13
(
1
), pp.
140
148
.
45.
Yoshikawa
,
T.
, and
Hosoda
,
K.
,
1996
, “
Modeling of Flexible Manipulators Using Virtual Rigid Links and Passive Joints
,”
Int. J. Rob. Res.
,
15
(
3
), pp.
290
299
.
46.
Khalil
,
W.
, and
Dombre
,
E.
,
2002
,
Modeling, Identification and Control of Robots
,
Hermes Penton Science
,
London
.
47.
Rossi
,
C.
, and
Savino
,
S.
,
2013
, “
Robot Trajectory Planning by Assigning Positions and Tangential Velocities
,”
Rob. Comput. Integr. Manuf.
,
29
(
1
), pp.
139
156
.
48.
Siciliano
,
B.
, and
Khatib
,
O.
,
2008
,
Springer Handbook of Robotics
,
Springer
,
Berlin, Heidelberg
.
49.
Celentano
,
L.
,
2008
, “
An Innovative Method for Robots Modelling and Simulation
,”
New Approaches in Automation and Robotics
,
H.
Aschemann
, ed.,
InTech
,
Vienna, Austria
, pp.
173
196
.
50.
Celentano
,
L.
, and
Iervolino
,
R.
,
2007
, “
A Novel Approach for Spatial Robots Modelling and Simulation
,”
13th IEEE International Conference on Methods and Models in Automation and Robotics
, Szczecin, Poland, pp.
1005
1010
.
51.
Celentano
,
L.
, and
Iervolino
,
R.
,
2006
, “
New Results on Robot Modelling and Simulation
,”
ASME J. Dyn. Syst. Meas., Control
,
128
(
4
), pp.
811
819
.
52.
Celentano
,
L.
,
2013
, “
An Easy and Efficient Method for Flexible Robots Modelling and Simulation
,”
11th International Conference of Numerical Analysis and Applied Mathematics 2013
, Rhodes, Greece, pp.
1266
1270
.
53.
Celentano
,
L.
, and
Coppola
,
A.
,
2011
, “
A Computationally Efficient Method for Modeling Flexible Robots Based on the Assumed Modes Method
,”
Appl. Math. Comput.
,
218
(
8
), pp.
4483
4493
.
54.
Celentano
,
L.
, and
Coppola
,
A.
,
2011
, “
A Wavelet Based Method to Modelling Realistic Flexible Robots
,”
18th IFAC World Congress
, Milano, Italy, pp.
929
937
.
55.
Celentano
,
L.
,
2012
, “
An Innovative Method to Modelling Realistic Flexible Robots
,”
Appl. Math. Sci.
,
6
(
73
), pp.
3623
3659
.
56.
Celentano
,
L.
,
2005
, “
A General and Efficient Robust Control Method for Uncertain Nonlinear Mechanical Systems
,”
44th IEEE
CDC-ECC
, Seville, Spain, Dec. 12–15, pp.
659
665
.
57.
Celentano
,
L.
,
2012
,
Robust Tracking Controllers Design With Generic References for Continuous and Discrete Uncertain Linear SISO Systems
,
LAP LAMBERT Academic Publishing
,
Saarbrücken, Germany
.
You do not currently have access to this content.