In this paper, we have addressed a sliding-mode switching control scheme with disturbance observer for a class of single-input single-output (SISO) discrete switched nonlinear systems which suffer from uncertain parameters. To overcome the influences, the external disturbances, and uncertainty, an application of the boiler steam temperature control systems has been modeled as the control plant, and a disturbance compensator observer from the sliding-mode dynamics has been proposed to enhance robustness and decrease the system chattering. With the presented control scheme, using the feedback linearizable method and average dwell time technique, the closed-loop switching system is stable such that the output tracking error converges to a small neighborhood nearby zero and the sliding-mode surface can be well obtained. Experimental results of the superheated steam temperature systems have developed the better performance of the proposed control scheme over traditional sliding control strategy, which have demonstrated good accuracy of tracking error performance.

References

1.
Utkin
,
V.
,
1977
, “
Variable Structure Systems With Sliding Modes
,”
IEEE Trans. Autom. Control
,
22
(
2
), pp.
212
222
.
2.
Chen
,
M.
, and
Chen
,
W. H.
,
2010
, “
Sliding Mode Control for a Class of Uncertain Nonlinear System Based on Disturbance Observer
,”
Int. J. Adapt. Control Signal Process.
,
24
(1), pp.
51
64
.
3.
Lee
,
S. C.
,
Li
,
Y.
,
Chen
,
Y. Q.
, and
Ahn
,
H. S.
,
2014
, “
H-Infinity and Sliding Mode Observers for Linear Time-Invariant Fractional-Order Dynamic Systems With Initial Memory Effect
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
5
), p.
051022
.
4.
Sun
,
N. N.
,
Niu
,
Y. G.
, and
Chen
,
B.
,
2014
, “
Optimal Integral Sliding Mode Control for a Class of Uncertain Discrete-Time Systems
,”
Optim. Control Appl. Methods
,
35
(
4
), pp.
468
478
.
5.
Chakrabarty
,
S.
, and
Bandyopadhyay
,
B.
,
2015
, “
A Generalized Reaching Law for Discrete Time Sliding Mode Control
,”
Automatica
,
52
, pp.
83
86
.
6.
Ginoya
,
D.
,
Shendge
,
P. D.
, and
Phadke
,
S. B.
,
2015
, “
State and Extended Disturbance Observer for Sliding Mode Control of Mismatched Uncertain Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
7
), p.
074502
.
7.
Ginoya
,
D.
,
Shendge
,
P. D.
, and
Phadke
,
S. B.
,
2015
, “
Disturbance Observer Based Sliding Mode Control of Nonlinear Mismatched Uncertain Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
26
, pp.
98
107
.
8.
Wu
,
M.
, and
Chen
,
J. S.
,
2014
, “
A Discrete-Time Global Quasi-Sliding Mode Control Scheme With Bounded External Disturbance Rejection
,”
Asian J. Control
,
16
(
6
), pp.
1839
1848
.
9.
Chan
,
C. Y.
,
1998
, “
Discrete Adaptive Sliding Mode Control of a State-Space System With a Bounded Disturbance
,”
Automatica
,
34
(
12
), pp.
1631
1635
.
10.
Wang
,
J. X.
,
Li
,
S. H.
,
Yang
,
J.
,
Wu
,
B.
, and
Li
,
Q.
,
2015
, “
Extended State Observer-Based Sliding Mode Control for PWM-Based DC-DC Buck Power Converter Systems With Mismatched Disturbances
,”
IET Control Theory Appl.
,
9
(4), pp.
579
586
.
11.
Tseng
,
C. S.
, and
Chen
,
B. S.
,
2009
, “
Robust Fuzzy Observer-Based Fuzzy Control Design for Nonlinear Discrete-Time Systems With Persistent Bounded Disturbances
,”
IEEE Trans. Fuzzy Syst.
,
17
(
3
), pp.
711
723
.
12.
Xiao
,
L. F.
, and
Zhu
,
Y.
,
2014
, “
Sliding Mode Output Feedback Control Based on Tracking Error Observer With Disturbance Estimator
,”
ISA Trans.
,
53
(
4
), pp.
1061
1072
.
13.
Pai
,
M. C.
,
2014
, “
Discrete-Time Sliding Mode Control for Robust Tracking and Model Following of Systems With State and Input Delays
,”
Nonlinear Dyn.
,
76
(
3
), pp.
1769
1779
.
14.
Xu
,
J. X.
, and
Abidi
,
K.
,
2008
, “
Discrete-Time Output Integral Sliding-Mode Control for a Piezomotor-Driven Linear Motion Stage
,”
IEEE Trans. Ind. Electron.
,
55
(11), pp.
3917
3926
.
15.
Abidi
,
K.
,
Xu
,
J. X.
, and
Yu
,
X. H.
,
2007
, “
On the Discrete-Time Integral Sliding-Mode Control
,”
IEEE Trans. Autom. Control
,
52
(
4
), pp.
709
715
.
16.
Bartoszewicz
,
A.
,
1998
, “
Discrete-Time Quasi-Sliding-Mode Control Strategies
,”
IEEE Trans. Ind. Electron.
,
45
(
4
), pp.
633
637
.
17.
Yang
,
J.
,
Li
,
S. H.
, and
Yu
,
X. H.
,
2013
, “
Sliding-Mode Control for Systems With Mismatched Uncertainties Via a Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
60
(
1
), pp.
160
169
.
18.
Ginoya
,
D.
,
Shendge
,
P. D.
, and
Phadke
,
S. B.
,
2014
, “
Sliding Mode Control for Mismatched Uncertain Systems Using an Extended Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
61
(
4
), pp.
1983
1992
.
19.
Hajiahmadi
,
M.
,
Schutter
,
B.
, and
Hellendoorn
,
H.
,
2014
, “
Stabilization and Robust H-Infinity Control for Sector-Bounded Switched Nonlinear Systems
,”
Automatica
,
50
(
10
), pp.
2726
2731
.
20.
Cao
,
Y.
, and
Chen
,
X. B.
,
2014
, “
Disturbance-Observer-Based Sliding-Mode Control for a 3-DOF Nanopositioning Stage
,”
IEEE ASME Trans. Mechatronics
,
19
(
3
), pp.
924
931
.
21.
Milosavljevic
,
C.
,
Perunicic-Drazenovic
,
B.
, and
Veselic
,
B.
,
2013
, “
Discrete-Time Velocity Servo System Design Using Sliding Mode Control Approach With Disturbance Compensation
,”
IEEE Trans. Ind. Inf.
,
9
(
2
), pp.
920
927
.
22.
Qu
,
S. C.
,
Xia
,
X. H.
, and
Zhang
,
J. F.
,
2014
, “
Dynamics of Discrete-Time Sliding-Mode-Control Uncertain Systems With a Disturbance Compensator
,”
IEEE Trans. Ind. Electron.
,
61
(
7
), pp.
3502
3510
.
23.
Lee
,
S. M.
, and
Lee
,
B. H.
,
1999
, “
A Discrete-Time Sliding Mode Controller and Observer With Computation Time Delay
,”
Control Eng. Pract.
,
7
(
8
), pp.
943
955
.
24.
Euntai
,
K.
,
2003
, “
A Discrete-Time Fuzzy Disturbance Observer and Its Application to Control
,”
IEEE Trans. Fuzzy Syst.
,
11
(3), pp.
399
350
.
25.
Sun
,
H. B.
, and
Hou
,
L. L.
,
2014
, “
Composite Anti-Disturbance Control for a Discrete-Time Time-Varying Delay System With Actuator Failures Based on a Switching Method and a Disturbance Observer
,”
Nonlinear Anal. Hybrid Syst.
,
14
, pp.
126
138
.
26.
Xie
,
G. M.
, and
Wang
,
L.
,
2009
, “
Periodic Stabilizability of Switched Linear Control Systems
,”
Automatica
,
45
(
9
), pp.
2141
2148
.
27.
Branicky
,
M.
,
1998
, “
Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems
,”
IEEE Trans. Autom. Control
,
43
(
4
), pp.
475
482
.
28.
Homaee
,
O.
,
Zakariazadeh
,
A.
, and
Jadid
,
S.
,
2014
, “
Real-Time Voltage Control Algorithm With Switched Capacitors in Smart Distribution System in Presence of Renewable Generations
,”
Int. J. Electr. Power Energy Syst.
,
54
, pp.
187
197
.
29.
Long
,
L. J.
, and
Zhao
,
J.
,
2012
, “
Control of Switched Nonlinear Systems in p-Normal Form Using Multiple Lyapunov Functions
,”
IEEE Trans. Autom. Control
,
57
(
5
), pp.
1285
1291
.
30.
Sun
,
Z. D.
, and
Ge
,
S. S.
,
2005
, “
Analysis and Synthesis of Switched Linear Control Systems
,”
Automatica
,
41
(
2
), pp.
181
195
.
31.
Zhao
,
X. D.
,
Zheng
,
X. L.
,
Niu
,
B.
, and
Liu
,
L.
,
2015
, “
Adaptive Tracking Control for a Class of Uncertain Switched Nonlinear Systems
,”
Automatica
,
52
, pp.
185
191
.
32.
Yu
,
L.
,
2015
, “
Modeling and Analysis of Superheated Steam Temperature Control System Based on Least-Squares Algorithm With Gradual Reducing Memory
,”
27th Chinese Control and Decision Conference
, Qingdao, China, May 23–25, pp.
559
563
.
You do not currently have access to this content.