In this paper, hybrid parameter estimation technique is developed to improve computational efficiency and accuracy of pure GA-based estimation. The proposed strategy integrates a GA and the Maximum Likelihood Estimation. Choices of input signals and estimation criterion are discussed involving an extensive sensitivity analysis. Experiment-related aspects, such as the imperfection of data acquisition, are also considered. Computer simulation results reveal that the hybrid parameter estimation method proposed in this study is very efficient and clearly outperforms conventional techniques and pure GAs in accuracy, efficiency, as well as robustness with respect to the initial guesses and measurement uncertainty. Primary experimental validation is also implemented, including the interpretation of field test data, as well as analysis of errors associated with aspects of experiment design.

1.
Eykhoff
,
P.
, 1974,
System Identification
,
Wiley
,
London
.
2.
Astrom
,
K. J.
, and
Eykhoff
,
P.
, 1971, “
System Identification—A Survey
,”
Automatica
0005-1098,
7
, pp.
123
162
.
3.
Schoukens
,
J.
, and
Pintelon
,
R.
, 1991,
Identification of Linear Systems
,
Pergamon
,
New York
.
4.
Ljung
,
L.
, 1999,
System Identification, Theory for the Users
,
Prentice–Hall PTR
,
Upper Saddle River, NJ
.
5.
Sheta
,
A. F.
, and
De Jong
,
K. A.
, 1996, “
Parameter Estimation of Nonlinear Systems in Noisy Environments Using Genetic Algorithms
,”
Proceedings of the 1996 Int. Symp. On Intelligent Control
, Dearborn, MI, 15–18 Sep. 1996, pp.
360
365
.
6.
Holland
,
J. H.
, 1962, “
Outline for a Logical Theory of Adaptive Systems
,”
J. ACM
1535-9921,
3
, pp.
297
314
.
7.
Holland
,
J. H.
, 1975,
Adaptation in Natural and Artificial Systems
,
Univ. Mich. Press
,
Ann Arbor, MI
.
8.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization and Machine Learning
,
Addison-Wesley
,
Reading, MA
.
9.
De Jong
,
K. A.
, 1975, “
An Analysis of the Behavior of a Class of Genetic Adaptive Systems
,” Ph.D. dissertation (CCS), Univ. Mich., Ann Arbor, MI.
10.
De Jong
,
K. A.
, 1980, “
Adaptive System Design: A Genetic Approach
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
10
, pp.
556
574
.
11.
De Jong
,
K. A.
, 1988, “
Learning With Genetic Algorithms: An Overview
,”
Mach. Learn.
0885-6125,
3
, pp.
121
138
.
12.
Kristinsson
,
K.
, and
Dumont
,
G. A.
, 1988, “
Genetic Algorithms in System Identification
,”
The Third IEEE Int. Symp. Intelligent Control
, pp.
597
602
.
13.
Kristinsson
,
K.
, and
Dumont
,
G. A.
, 1992, “
System Identification and Control Using Genetic Algorithms
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
22
, pp.
1033
1046
.
14.
Qi
,
X.
, and
Palmieri
,
F.
, 1994, “
Theoretical Analysis of Evolutionary Algorithms With An Infinite Population Size in Continuous Space: Parts I and II
,”
IEEE Trans. Neural Netw.
1045-9227,
5
, pp.
102
129
.
15.
Yao
,
L.
, and
Sethares
,
W. A.
, 1994, “
Nonlinear Parameter Estimation via the Genetic Algorithm
,”
IEEE Trans. Signal Process.
1053-587X,
42
, pp.
927
935
.
16.
Nagai
,
M.
,
Onda
,
M.
, and
Katagiri
,
T.
, 1996, “
Vehicle Motion Control Using Genetic Algorithm (1st Report, Urgent Obstacle Avoidance Steering)
,”
Transactions of the Japan Society of Mechanical Engineers(JSME)
, Part C 62, Jul 1996, pp.
2648
2653
.
17.
Gremling
,
J. R.
, and
Passino
,
K. M.
, 1997, “
Genetic Adaptive Failure Estimation
,”
Proceedings of the American Control Conference
, 4–6 Jun. 1997, Vol.
2
, pp.
908
912
.
18.
Lu
,
S. W.
, and
Basar
,
T.
, 1995, “
Genetic Algorithms-Based Identification
,”
Proceedings of the International Conference on Systems, Man and Cybernetics
, 22–25 Oct. 1996, pp.
644
649
.
19.
Abutaleb
,
A.
, 1997, “
A Genetic Algorithm for The Maximum Likelihood Estimation of The Parameters of Simusoids in a Noisy Environment
,”
Circuits Syst. Signal Process.
0278-081X,
16
, pp.
69
81
.
20.
Xiao
,
J.
, and
Kulakowski
,
B. T.
, 2001, “
Genetic Algorithm-Based Maximum Likelihood Parameter Estimation for Transit Buses
,” IMECE2001/DE-23251, 11–16 Nov. 2001, New York, NY.
21.
Teodorovic
,
D.
,
Van Aerde
,
M.
,
Zhu
,
F.
, and
Dion
,
F.
, 2002, “
Genetic Algorithms Approach to the Problem of the Automated Vehicle Identification Equipment Locations
,”
J. Adv. Transp.
0197-6729,
36
, pp.
1
21
.
22.
Kusagawa
,
S.
,
Baba
,
J.
,
Shutoh
,
K.
, and
Masada
,
E.
, 2004, “
Multipurpose Design Optimization of EMS-Type Magnetically Levitated Vehicle Based on Genetic Algorithm
,”
IEEE Trans. Appl. Supercond.
1051-8223,
14
, pp.
1922
1925
.
23.
Naeem
,
W.
,
Sutton
,
R.
,
Chudley
,
J.
,
Dalgleish
,
F. R.
, and
Tetlow
,
S.
, 2004, “
A Genetic Algorithm-Based Model Predictive Control Autopilot Design and its Implementation in an Autonomous Underwater Vehicle
,”
Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment
, August, 2004, Vol.
218
, No.
3
, pp.
175
188
.
24.
Nalezc
,
A. G.
, 1989, “
Application of Sensitivity Methods to Analysis and Synthesis of Vehicle Dynamic Systems
,”
Veh. Syst. Dyn.
0042-3114,
18
, pp.
1
44
.
25.
Klinikowski
,
D. J.
,
Gilmore
,
B. J.
, and
Kulakowski
,
B. T.
, 1999, “
Transit Bus Durability Track Assessment and Validation
,”
Heavy Vehicle Sys., Int. J. Vehicle Des.
1351-7848,
6
, pp.
273
286
.
26.
Ghogho
,
M.
,
Nandi
,
A. K.
, and
Swami
,
A.
, 1999, “
Cramer-Rao Bounds and Maximum Likelihood Estimation for Random Amplitude Phase-Modulated Signals
,”
IEEE Trans. Signal Process.
1053-587X,
47
, pp.
2905
2916
.
27.
Morelli
,
E. A.
, and
Klein
,
V.
, 1997, “
Accuracy of Aerodynamic Model Parameters Estimated from Flight Test Data
,”
J. Guid. Control Dyn.
0731-5090,
20
, pp.
74
80
.
28.
Suresh
,
B. A.
, and
Gilmore
,
B. J.
, 1994, “
Vehicle Model Complexity—How Much Is Too Much
,” SAE Paper No. 940656.
You do not currently have access to this content.