Abstract

The scarcity of measured data for defect identification often challenges the development and certification of additive manufacturing processes. Knowledge transfer and sharing have become emerging solutions to small-data challenges in quality control to improve machine learning with limited data, but this strategy raises concerns regarding privacy protection. Existing zero-shot learning and federated learning methods are insufficient to represent, select, and mask data to share and control privacy loss quantification. This study integrates differential privacy in cybersecurity with federated learning to investigate sharing strategies of manufacturing defect ontology. The method first proposes using multilevel attributes masked by noise in defect ontology as the sharing data structure to characterize manufacturing defects. Information leaks due to sharing ontology branches and data are estimated by epsilon differential privacy (DP). Under federated learning, the proposed method optimizes sharing defect ontology and image data strategies to improve zero-shot defect classification given privacy budget limits. The proposed framework includes (1) developing a sharing strategy based on multilevel attributes in defect ontology with controllable privacy leaks, (2) optimizing joint decisions in differential privacy, zero-shot defect classification, and federated learning, and (3) developing a two-stage algorithm to solve the joint optimization, combining stochastic gradient descent search for classification models and an evolutionary algorithm for exploring data-sharing strategies. A case study on zero-shot learning of additive manufacturing defects demonstrated the effectiveness of the proposed method in data-sharing strategies, such as ontology sharing, defect classification, and cloud information use.

References

1.
Socher
,
R.
,
Ganjoo
,
M.
,
Manning
,
C. D.
, and
Ng
,
A.
,
2013
, “
Zero-Shot Learning Through Cross-Modal Transfer
,”
Advances in Neural Information Processing Systems (NeurIPS)
,
Lake Tahoe, NV
,
Dec. 5–10
.
2.
Elhoseiny
,
M.
,
Saleh
,
B.
, and
Elgammal
,
A.
,
2013
, “
Write a Classifier: Zero-Shot Learning Using Purely Textual Descriptions
,”
IEEE International Conference on Computer Vision (ICCV)
,
Sydney, Australia
,
Dec. 1– 8
, pp.
2584
2591
.
3.
McMahan
,
B.
,
Moore
,
E.
,
Ramage
,
D.
, and
Hampson
,
S.
,
2017
, “
Communication-Efficient Learning of Deep Networks From Decentralized Data
,”
20th International Conference on Artificial Intelligence and Statistics (AISTATS)
,
Fort Lauderdale, FL
,
Apr. 20–22
, PMLR, pp.
1273
1282
.
4.
Mohammad
,
U.
, and
Sorour
,
S.
,
2019
, “
Adaptive Task Allocation for Asynchronous Federated Mobile Edge Learning
,” arXiv:1905.01656.
5.
Li
,
T.
,
Sahu
,
A. K.
,
Zaheer
,
M.
,
Sanjabi
,
M.
,
Talwalkar
,
A.
, and
Smith
,
V.
,
2020
, “
Federated Optimization in Heterogeneous Networks
,”
Proceedings of Machine Learning and Systems (MLSys)
,
Virtual Conference
,
Mar. 2–4
. https://arxiv.org/abs/2002.07948
6.
Fallah
,
A.
,
Mokhtari
,
A.
, and
Ozdaglar
,
A.
,
2020
, “
Personalized Federated Learning With Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach
,”
Advances in Neural Information Processing Systems (NeurIPS)
,
Virtual Conference
,
Dec. 6–12
https://arxiv.org/abs/2002.07948.
7.
Li
,
T.
,
Sanjabi
,
M.
,
Beirami
,
A.
, and
Smith
,
V.
,
2019
, “Fair Resource Allocation in Federated Learning.” arXiv:1905.10497.
8.
Kairouz
,
P.
,
McMahan
,
H. B.
,
Avent
,
B.
,
Bellet
,
A.
,
Bennis
,
M.
,
Bhagoji
,
A. N.
,
Bonawitz
,
K.
,
Charles
,
Z.
,
Cormode
,
G.
,
Cummings
,
R.
et al.,
2021
, “
Advances and Open Problems in Federated Learning
,”
Found. Trends Mach. Learn.
,
14
(
1–2
), pp.
1
210
.
9.
Abadi
,
M.
,
Chu
,
A.
,
Goodfellow
,
I.
,
McMahan
,
H. B.
,
Mironov
,
I.
,
Talwar
,
K.
, and
Zhang
,
L.
,
2016
, “
Deep Learning With Differential Privacy
,”
23rd ACM Conference on Computer and Communications Security (CCS 2016)
,
Vienna, Austria
,
Oct. 24–28
, pp.
308
318
.
10.
Geyer
,
R. C.
,
Klein
,
T.
, and
Nabi
,
M.
,
2017
, “Differentially Private Federated Learning: A Client Level Perspective.” arXiv:1712.07557.
11.
Wang
,
S.
,
Tuor
,
T.
,
Salonidis
,
T.
,
Leung
,
K. K.
,
Makaya
,
C.
,
He
,
T.
, and
Chan
,
K.
,
2019
, “
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
,”
IEEE J. Sel. Areas Commun.
,
37
(
6
), pp.
1205
1221
.
12.
Wang
,
Z.
,
Song
,
M.
,
Zhang
,
Z.
,
Song
,
Y.
,
Wang
,
Q.
, and
Qi
,
H.
,
2019
, “
Beyond Inferring Class Representatives: User-Level Privacy Leakage From Federated Learning
,”
IEEE Conference on Computer Communications (INFOCOM)
,
Paris, France
,
Apr. 29–May 2
, IEEE, pp.
2512
2520
.
13.
Dwork
,
C.
, and
Roth
,
A.
,
2014
, “
The Algorithmic Foundations of Differential Privacy
,”
Found. Trends Theor. Comput. Sci.
,
9
(
3–4
), pp.
211
407
.
14.
Wei
,
K.
,
Li
,
J.
,
Ding
,
M.
,
Ma
,
C.
,
Yang
,
H. H.
,
Farokhi
,
F.
,
Jin
,
S.
,
Quek
,
T. Q.
, and
Poor
,
H. V.
,
2020
, “
Federated Learning With Differential Privacy: Algorithms and Performance Analysis
,”
IEEE Trans. Inf. Forensics Secur.
,
15
, pp.
3454
3469
.
15.
Dankar
,
F. K.
, and
El Emam
,
K.
,
2013
, “
Practicing Differential Privacy in Health Care: A Review
,”
Trans. Data Priv.
,
6
(
1
), pp.
35
67
.
16.
Canonne
,
C. L.
,
Kamath
,
G.
, and
Steinke
,
T.
,
2020
, “
The Discrete Gaussian for Differential Privacy
,”
34th Conference on Neural Information Processing Systems (NeurIPS 2020)
,
Virtual Conference
,
Dec. 6–12
https://arxiv.org/abs/2004.00010.
17.
Ma
,
C.
,
Li
,
J.
,
Ding
,
M.
,
Yang
,
H. H.
,
Shu
,
F.
,
Quek
,
T. Q.
, and
Poor
,
H. V.
,
2020
, “
On Safeguarding Privacy and Security in the Framework of Federated Learning
,”
IEEE Network
,
34
(
4
), pp.
242
248
.
18.
Dwork
,
C.
,
2011
, “
A Firm Foundation for Private Data Analysis
,”
Commun. ACM
,
54
(
1
), pp.
86
95
.
19.
Dwork
,
C.
,
Rothblum
,
G. N.
, and
Vadhan
,
S.
,
2010
, “
Boosting and Differential Privacy
,”
51st Annual IEEE Symposium on Foundations of Computer Science (FOCS)
,
Las Vegas, NV
,
Oct. 23–26
, IEEE, pp.
51
60
.
20.
Kairouz
,
P.
,
Oh
,
S.
, and
Viswanath
,
P.
,
2015
, “
The Composition Theorem for Differential Privacy
,”
Proceedings of the 32nd International Conference on Machine Learning (ICML)
,
Lille, France
,
July 6–11
, PMLR,pp. 1376–1385.
21.
Lyu
,
X.
,
2022
, “
Composition Theorems for Interactive Differential Privacy
,”
36th Conference on Neural Information Processing Systems (NeurIPS 2022)
,
New Orleans, LA
,
Nov. 28–Dec. 9
https://arxiv.org/abs/2205.02895.
22.
Yue
,
X.
, and
Kontar
,
R.
,
2024
, “
Federated Gaussian Process: Convergence, Automatic Personalization and Multi-Fidelity Modeling
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
46
(
6
), pp.
4246
4261
.
23.
Sturm
,
L. D.
,
Williams
,
C. B.
,
Camelio
,
J. A.
,
White
,
J.
, and
Parker
,
R.
,
2017
, “
Cyber-Physical Vulnerabilities in Additive Manufacturing Systems: A Case Study Attack on the Stl File With Human Subjects
,”
J. Manuf. Syst.
,
44
, pp.
154
164
.
24.
Shi
,
Z.
,
Oskolkov
,
B.
,
Tian
,
W.
,
Kan
,
C.
, and
Liu
,
C.
,
2024
, “
Sensor Data Protection Through Integration of Blockchain and Camouflaged Encryption in Cyber-Physical Manufacturing Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
7
), p.
071004
.
25.
Shi
,
Z.
,
Kan
,
C.
,
Tian
,
W.
, and
Liu
,
C.
,
2021
, “
A Blockchain-Based G-Code Protection Approach for Cyber-Physical Security in Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
041007
.
26.
Yhdego
,
T. O.
,
Wang
,
H.
,
Yu
,
Z.
, and
Chi
,
H.
,
2023
, “
Ontology-Guided Attribute Learning to Accelerate Certification for Developing New Printing Processes
,”
IISE Trans.
,
56
(
10
), pp.
1085
1098
.
27.
Xian
,
Y.
,
Schiele
,
B.
, and
Akata
,
Z.
,
2017
, “
Zero-Shot Learning - The Good, the Bad and the Ugly
,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26
, pp.
4582
4591
.
28.
Halevi
,
S.
, and
Rabin
,
T.
,
2006
, “
Third Theory of Cryptography Conference
,”
Theory of Cryptography Conference
,
New York
,
Mar. 4–7
.
29.
Dwork
,
C.
,
McSherry
,
F.
,
Nissim
,
K.
, and
Smith
,
A.
,
2006
, “
Calibrating Noise to Sensitivity in Private Data Analysis
,”
Third Theory of Cryptography Conference
,
New York
,
Mar. 4–7
, Vol. 3, Springer, pp.
265
284
.
30.
Mironov
,
I.
,
2017
, “
Rényi Differential Privacy
,”
30th IEEE Computer Security Foundations Symposium (CSF)
,
Santa Barbara, CA
,
Aug. 21–25
, IEEE, pp.
263
275
.
31.
Balle
,
B.
, and
Wang
,
Y.-X.
,
2018
, “
Improving the Gaussian Mechanism for Differential Privacy: Analytical Calibration and Optimal Denoising
,”
35th International Conference on Machine Learning (ICML)
,
Stockholm, Sweden
,
July 10–15
, PMLR, pp.
394
403
.
32.
Papernot
,
N.
, and
McDaniel
,
P.
,
2018
, “Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning.” arXiv:1803.04765.
33.
Shan
,
X.
,
Mao
,
P.
,
Li
,
H.
,
Geske
,
T.
,
Bahadur
,
D.
,
Xin
,
Y.
,
Ramakrishnan
,
S.
, and
Yu
,
Z.
,
2019
, “
3D-Printed Photoactive Semiconducting Nanowire–Polymer Composites for Light Sensors
,”
ACS Appl. Nano Mater.
,
3
(
2
), pp.
969
976
.
34.
Deng
,
J.
,
Dong
,
W.
,
Socher
,
R.
,
Li
,
L.-J.
,
Li
,
K.
, and
Fei-Fei
,
L.
,
2009
, “
Imagenet: A Large-Scale Hierarchical Image Database
,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Miami, FL
,
June 20–25
, IEEE, pp.
248
255
.
You do not currently have access to this content.