Abstract

The rapid development of digitization and 3D printing is creating an ever-increasing demand for methods for the automated generation of 3D models from real components. Thanks to the progress and widespread use of computer vision, it is now possible to merge classical engineering tasks with image processing techniques. Computer-aided design can therefore be automated using information from image data. In this study, we present a novel method for automated digitization of 3D structures using AprilTag fiducial system and Solid Geometry Library. The proposed design process is implemented in matlab. AprilTags are used to realize 3D coordinate measurements to digitally capture the 3D dimensions of real components. Based on these data, 3D replica models are generated with the Solid Geometry Library toolbox, which enables the automated design of 3D surface models in matlab. The mathematical background of this procedure is described. The capability of the proposed method is demonstrated on 3D structures composed of components with fixed cross sections and fundamental 3D structures such as prisms, cylinders, and spheres. Further improvements in the coordinate measurement process using AprilTag and further implementation in matlab can extend the functionality for the digitization of more complex 3D structures.

References

1.
Hoschek
,
J.
, and
Dankwort
,
W.
,
1996
,
Reverse Engineering
,
Vieweg + Teubner Verlag
,
Wiesbaden
.
2.
Kamrani
,
A.
, and
Nasr
,
E. A.
,
2006
,
Rapid Prototyping
,
Springer Science + Business Media, Inc.
,
New York
.
3.
Motavalli
,
S.
,
1998
, “
Review of Reverse Engineering Approaches
,”
Comput. Ind. Eng.
,
35
(
1–2
), pp.
25
28
.
4.
Faro
, “
Quantum Max FaroArm® Series: The Global Standard in Contact Measurement Arm Technology
,” https://www.faro.com/en/Products/Hardware/Quantum-FaroArms, Accessed April 25, 2022.
5.
Martorelli
,
M.
,
Pensa
,
C.
, and
Speranza
,
D.
,
2014
, “
Digital Photogrammetry for Documentation of Maritime Heritage
,”
J. Mar. Archit.
,
9
(
1
), pp.
81
93
.
6.
Rocchini
,
C.
,
Cignoni
,
P.
,
Montani
,
C.
,
Pingi
,
P.
, and
Scopigno
,
R.
,
2001
, “
A Low Cost 3D Scanner Based on Structured Light
,”
Comput. Graph. Forum
,
20
(
3
), pp.
299
308
.
7.
Kaufman
,
J.
,
Clement
,
M.
, and
Rennie
,
A. E. W.
,
2015
, “
Reverse Engineering Using Close Range Photogrammetry for Additive Manufactured Reproduction of Egyptian Artifacts and Other Objets d'art2
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
1
), p.
011006
.
8.
Shah
,
G. A.
,
Polette
,
A.
,
Pernot
,
J.-P.
,
Giannini
,
F.
, and
Monti
,
M.
,
2022
, “
User-Driven Computer-Assisted Reverse Engineering of Editable CAD Assembly Models
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021014
.
9.
Rashidizad
,
H.
, and
Rahimi
,
A.
,
2014
, “
Building Three-Dimensional Scanner Based on Structured Light Technique Using Fringe Projection Pattern
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
3
), p.
035001
.
10.
Shenzhen Creality 3D Technology Co., Ltd
, “
CR-Scan 01
,” https://www.creality3dofficial.com/products/creality-cr-scan-01-3d-scanner-set, Accessed April 26, 2022.
11.
diondo GmbH
, “
diondo d1: Höchstauflösendes Mikro-CT System
,” https://www.diondo.com/produkte/diondo-d1#technische_daten, Accessed April 26, 2022.
12.
Carmignato
,
S.
,
2017
,
Industrial X-Ray Computed Tomography
,
Springer International Publishing
,
Cham
.
13.
Olson
,
E.
,
2011
, “
AprilTag: A Robust and Flexible Visual Fiducial System
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
3400
3407
.
14.
Hartley
,
R.
, and
Zisserman
,
A.
,
2004
,
Multiple View Geometry in Computer Vision
,
Cambridge University Press
,
Cambridge
.
15.
Lueth
,
T. C.
,
2015
, “
SG-Library: Entwicklung Einer Konstruktiven Matlabtoolbox zur Raumlichen Modellierung von Körpern, Gelenken und Getrieben
,”
11. Kolloquium Getriebetechnik
,
Garching
, pp.
183
203
.
16.
Sun
,
Y.
, and
Lueth
,
T. C.
,
2021
, “
SGCL: A B-Rep-Based Geometry Modeling Language in MATLAB for Designing 3D-Printable Medical Robots
,”
2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)
,
Lyon, France
,
Aug. 23–27
, pp.
1388
1393
.
17.
Kalaitzakis
,
M.
,
Cain
,
B.
,
Carroll
,
S.
,
Ambrosi
,
A.
,
Whitehead
,
C.
, and
Vitzilaios
,
N.
,
2021
, “
Fiducial Markers for Pose Estimation
,”
J. Intell. Rob. Syst.
,
101
(
4
).
You do not currently have access to this content.