Abstract

We present a new method for computing volume integrals based on data sampled on a regular Cartesian grid. We treat the case where the domain is defined implicitly by an inequality, and the input data include sampled values of the defining function and the integrand. The method employs Federer’s coarea formula (Federer, 1969, Geometric Measure Theory, Grundlehren der mathematischen Wissenschaften, Springer) to convert the volume integral to a one-dimensional quadrature over level set values where the integrand is an integral over a level set surface. Application of any standard quadrature method produces an approximation of the integral over the continuous range as a weighted sum of integrals over level sets corresponding to a discrete set of values. The integral over each level set is evaluated using the grid-based approach presented by Yurtoglu et al. (2018, “Treat All Integrals as Volume Integrals: A Unified, Parallel, Grid-Based Method for Evaluation of Volume, Surface, and Path Integrals on Implicitly Defined Domains,” J. Comput. Inf. Sci. Eng., 18, p. 3). The new coarea method fills a need for computing volume integrals whose integrand cannot be written in terms of a vector potential. We present examples with known results, specifically integration of polynomials over the unit sphere. We also present Saye’s (2015, “High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles,” SIAM J. Sci. Comput., 37) example of integrating a logarithmic integrand over the intersection of a bounding box with an open domain implicitly defined by a trigonometric polynomial. For the final examples, the input data is a grid of mixture ratios from a direct numerical simulation of fluid mixing, and we demonstrate that the grid-based coarea method applies to computing volume integrals when no analytical form of the implicit defining function is given. The method is highly parallelizable, and the results presented are obtained using a parallel implementation capable of producing results at interactive rates.

References

1.
Shete
,
K.
, and
de Bruyn Kops
,
S. M.
,
2020
, “
Area of Scalar Isosurfaces in Homogeneous Isotropic Turbulence as a Function of Reynolds and Schmidt Numbers
,”
J. Fluid Mech.
,
883
, p.
A38
.10.1017/jfm.2019.875
2.
Moon
,
F.
,
1998
,
Applied Dynamics: With Applications to Multibody and Mechatronic Systems
(
Physics Textbook
),
Wiley
,
Hoboken, NJ
.
3.
Ruina
,
A.
, and
Pratap
,
R.
,
2010
,
Introduction to Statics and Dynamics
,
Oxford University Press
,
Oxford
.
4.
Biran
,
A.
, and
López-Pulido
,
R.
,
2014
, “Numerical Integration in Naval Architecture,”
Ship Hydrostatics and Stability
, Vol.
12
,
Butterworth-Heinemann
, pp.
77
96
.
5.
Geweke
,
J.
,
1996
,
Handbook of Computational Economics
, Vol.
1
,
H. M.
Amman
,
D. A.
Kendrick
, and
J.
Rust
, eds.,
Elsevier
,
Amsterdam
, pp.
731
800
.
6.
Davis
,
P.
,
Rabinowitz
,
P.
, and
Rheinbolt
,
W.
,
2014
,
Methods of Numerical Integration
,
Academic Press
,
New York
.
7.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
2007
,
Numerical Recipes 3rd Edition: The Art of Scientific Computing
, 3rd ed.,
Cambridge University Press
,
New York
.
8.
Engels
,
H.
,
1980
,
Numerical Quadrature and Cubature
,
Kluwer Academic Publishers
,
Norwell, MA
.
9.
Hazewinkel
,
M.
,
1987
,
Encyclopaedia of Mathematics (1)
(
Encyclopaedia of Mathematics: An Updated and Annotated Translation of the Soviet “Mathematical Encyclopaedia”
),
Springer
.
10.
Gonnet
,
P.
,
2012
, “
A Review of Error Estimation in Adaptive Quadrature
,”
ACM Comput. Surv.
,
44
(
4
), pp.
1
36
. 10.1145/2333112.2333117
11.
Thiagarajan
,
V.
, and
Shapiro
,
V.
,
2014
, “
Adaptively Weighted Numerical Integration Over Arbitrary Domains
,”
Comput. Math. Appl.
,
67
(
9
), pp.
1682
1702
. 10.1016/j.camwa.2014.03.001
12.
Yurtoglu
,
M.
, and
Carton
,
M.
,
2018
, “
Treat All Integrals as Volume Integrals: A Unified, Parallel, Grid-Based Method for Evaluation of Volume, Surface, and Path Integrals on Implicitly Defined Domains
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
2
), p.
021013
.10.1115/1.4039639
13.
Ensz
,
M. T.
,
Storti
,
D. W.
, and
Ganter
,
M. A.
,
1998
, “
Implicit Methods for Geometry Creation
,”
Int. J. Comput. Geometry Appl.
,
8
(
5–6
), pp.
509
536
. 10.1142/S0218195998000266
14.
Pasko
,
A.
,
Adzhiev
,
V.
,
Sourin
,
A.
, and
Savchenko
,
V.
,
1995
, “
Function Representation in Geometric Modeling: Concepts, Implementation and Applications
,”
The Visual Comput.
,
11
(
8
), pp.
429
446
. 10.1007/BF02464333
15.
Shapiro
,
V.
,
2007
, “
Semi-Analytic Geometry With R-Functions
,”
ACTA Numerica
,
16
, pp.
239
303
. 10.1017/S096249290631001X
16.
Shapiro
,
V.
,
1994
, “
Real Functions for Representation of Rigid Solids
,”
Comput. Aided Geometric Des.
,
11
(
2
), pp.
153
175
. 10.1016/0167-8396(94)90030-2
17.
Scheidegger
,
C. E.
,
Schreiner
,
J. M.
,
Duffy
,
B.
,
Carr
,
H.
, and
Silva
,
C. T.
,
2008
, “
Revisiting Histograms and Isosurface Statistics
,”
IEEE Trans. Visual. Comput. Graph.
,
14
(
6
), pp.
1659
1666
. 10.1109/TVCG.2008.160
18.
Federer
,
H.
,
1969
,
Geometric Measure Theory
,
Springer
,
New York, NY
.
19.
Rachh
,
M.
, and
Greengard
,
L.
,
2016
, “
Integral Equation Methods for Elastance and Mobility Problems in Two Dimensions
,”
SIAM J. Numer. Anal.
,
54
(
5
), pp.
2889
2909
. 10.1137/15M103251X
20.
Thiagarajan
,
V.
, and
Shapiro
,
V.
,
2016
, “
Adaptively Weighted Numerical Integration in the Finite Cell Method
,”
Comput. Methods Appl. Mech. Eng.
,
311
, pp.
250
279
. 10.1016/j.cma.2016.08.021
21.
Resnikoff
,
H. L.
, and
Wells
,
R. O.
, Jr.
,
1998
,
Wavelet Analysis: The Scalable Structure of Information
,
Springer-Verlag
,
Berlin, Heidelberg
.
22.
Lam
,
S. K.
,
Pitrou
,
A.
, and
Seibert
,
S.
,
2015
, “
Numba: A LLVM-Based Python JIT Compiler
,”
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, LLVM ’15
,
Austin, TX
,
Nov.
23.
Cook
,
S.
,
2013
,
CUDA Programming: A Developer’s Guide to Parallel Computing With GPUs
, 1st ed.,
Morgan Kaufmann Publishers Inc.
,
San Francisco, CA
.
24.
Saye
,
R. I.
,
2015
, “
High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles
,”
SIAM J. Sci. Comput.
,
37
(
2
), pp.
A993
A1019
.
25.
Blakeley
,
B. C.
,
Riley
,
J. J.
,
Storti
,
D. W.
, and
Wang
,
W.
,
2017
, “
On the Kinematics of Scalar Iso-Surfaces in Turbulent Flow
,”
APS Meeting Abstracts
,
Denver, CO
,
November
.
26.
Abedian
,
A.
,
Parvizian
,
J.
,
Düster
,
A.
,
Khademyzadeh
,
H.
, and
Rank
,
E.
,
2013
, “
Performance of Different Integration Schemes in Facing Discontinuities in the Finite Cell Method
,”
Int. J. Comput. Methods
,
10
(
3
), p.
1350002
. 10.1142/S0219876213500023
27.
W. R. Mathematica Inc.
, Version 12.0. Champaign, IL,
2019
.
28.
Wang
,
W.
,
Riley
,
J.
, and
Kramlich
,
J.
,
2012
, “
On the Kinematics of Scalar Iso-Surfaces in a Turbulent Flow
,”
65th Annual Meeting of the APS Division of Fluid Dynamics
,
San Diego, CA
,
November
.
29.
Van der Walt
,
S.
,
Schönberger
,
J. L.
,
Nunez-Iglesias
,
J.
,
Boulogne
,
F.
,
Warner
,
J. D.
,
Yager
,
N.
,
Gouillart
,
E.
, and
Yu
,
T.
,
2014
, “
scikit-image: Image Processing in Python
,”
PeerJ
,
2
, p.
e453
. 10.7717/peerj.453
30.
Malhotra
,
D.
, and
Biros
,
G.
,
2015
, “
Pvfmm: A Parallel Kernel Independent Fmm for Particle and Volume Potentials
,”
Commun. Comput. Phys.
,
18
(
3
), pp.
808
830
. 10.4208/cicp.020215.150515sw
You do not currently have access to this content.