Skip Nav Destination
Issues
March 2015
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Research Papers
Modeling Inelastic Collisions With the Hunt–Crossley Model Using the Energetic Coefficient of Restitution
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021001.
doi: https://doi.org/10.1115/1.4028473
Topics:
Collisions (Physics)
,
Displacement
,
Simulation
Stability and Bifurcation Analysis of an Asymmetrically Electrostatically Actuated Microbeam
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021002.
doi: https://doi.org/10.1115/1.4028537
Topics:
Bifurcation
,
Microbeams
,
Stability
,
Deflection
Numerical Scheme for a Quadratic Type Generalized Isoperimetric Constraint Variational Problems With A-Operator
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021003.
doi: https://doi.org/10.1115/1.4028630
Topics:
Polynomials
,
Approximation
,
Eigenvalues
Natural Frequency Computation of Parallel Robots
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021004.
doi: https://doi.org/10.1115/1.4028573
Topics:
Computation
,
Robots
,
Stiffness
,
Tree (Data structure)
Nonlinear Analysis of Mineral Wool Fiberization Process
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021005.
doi: https://doi.org/10.1115/1.4026842
Topics:
Mineral wool
,
Time series
,
Wheels
Dynamic Optimization of Human Running With Analytical Gradients
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021006.
doi: https://doi.org/10.1115/1.4027672
Topics:
Armor
,
Design
,
Dynamics (Mechanics)
,
Impulse (Physics)
,
Knee
,
Optimization
,
Simulation
,
Torque
,
Kinematics
,
Angular momentum
Intrinsic Localized Modes of Harmonic Oscillations in Pendulum Arrays Subjected to Horizontal Excitation
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021007.
doi: https://doi.org/10.1115/1.4028474
Topics:
Bifurcation
,
Excitation
,
Frequency response
,
Oscillations
,
Pendulums
,
Elastic constants
,
Vibration
Use of ANCF Surface Geometry in the Rigid Body Contact Problems: Application to Railroad Vehicle Dynamics
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021008.
doi: https://doi.org/10.1115/1.4027442
Topics:
Contact mechanics
,
Geometry
,
Interpolation
,
Railroads
,
Rails
,
Simulation
,
Shapes
,
Vehicles
,
Vehicle dynamics
Accuracy and Reliability of Piecewise-Constant Method in Studying the Responses of Nonlinear Dynamic Systems
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021009.
doi: https://doi.org/10.1115/1.4026895
Strongly Nonlinear Subharmonic Resonance and Chaotic Motion of Axially Moving Thin Plate in Magnetic Field
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021010.
doi: https://doi.org/10.1115/1.4027490
Topics:
Bifurcation
,
Magnetic fields
,
Magnetic induction
,
Poincaré maps
,
Resonance
,
Stress
,
Tension
,
Vibration
,
Strips
,
Chaos
Galerkin Approximations for Stability of Delay Differential Equations With Time Periodic Coefficients
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021011.
doi: https://doi.org/10.1115/1.4026989
Topics:
Delays
,
Feedback
,
Galerkin method
,
Stability
,
Delay differential equations
,
Computer simulation
A Physics-Based Musculoskeletal Driver Model to Study Steering Tasks
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021012.
doi: https://doi.org/10.1115/1.4027333
Topics:
Muscle
,
Musculoskeletal system
,
Simulation
,
Steering wheels
,
Vehicles
,
Torque
,
Physics
,
Control equipment
,
Optimization
,
Bicycles
Topological Chaos by Pseudo-Anosov Map in Cavity Laminar Mixing
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021013.
doi: https://doi.org/10.1115/1.4026634
Topics:
Cavities
,
Chaos
,
Flow (Dynamics)
,
Particulate matter
,
Rods
,
Modeling
,
Computation
Fatigue Life of Curved Panels Under Combined Loading
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021014.
doi: https://doi.org/10.1115/1.4028802
Topics:
Fatigue life
,
Stress
,
Shells
,
Stiffness
Ideal Compliant Joints and Integration of Computer Aided Design and Analysis
Ashraf M. Hamed, Paramsothy Jayakumar, Michael D. Letherwood, David J. Gorsich, Antonio M. Recuero, Ahmed A. Shabana
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021015.
doi: https://doi.org/10.1115/1.4027999
Topics:
Chain
,
Deformation
,
Finite element analysis
,
Tracked vehicles
,
Computer-aided design
,
B-splines
,
Damping
,
Algebra
An Accurate Jacobi Pseudospectral Algorithm for Parabolic Partial Differential Equations With Nonlocal Boundary Conditions
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021016.
doi: https://doi.org/10.1115/1.4026930
Topics:
Boundary-value problems
,
Errors
,
Polynomials
,
Algorithms
,
Partial differential equations
Characteristic Equation-Based Dynamic Analysis of a Three-Revolute Prismatic Spherical Parallel Kinematic Machine
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021017.
doi: https://doi.org/10.1115/1.4028416
Topics:
Eigenvalues
,
Kinematics
,
Reactor protection systems
,
Screws
,
Stiffness
,
Mode shapes
,
Jacobian matrices
,
Parallel mechanisms
,
Machinery
,
Deflection
Adaptive Hybrid Function Projective Synchronization of General Chaotic Complex Systems With Different Orders
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021018.
doi: https://doi.org/10.1115/1.4027975
Topics:
Complex systems
,
Control equipment
,
Synchronization
,
Errors
An Efficient Legendre Spectral Tau Matrix Formulation for Solving Fractional Subdiffusion and Reaction Subdiffusion Equations
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021019.
doi: https://doi.org/10.1115/1.4027944
Topics:
Algebra
,
Boundary-value problems
,
Error functions
,
Polynomials
,
Approximation
The First Integral Method for Exact Solutions of Nonlinear Fractional Differential Equations
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021020.
doi: https://doi.org/10.1115/1.4028065
Topics:
Differential equations
,
Polynomials
,
Spacetime
,
Algebra
A Global Simulation Method for Flexible Multibody Systems With Variable Topology Structures
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021021.
doi: https://doi.org/10.1115/1.4028803
Topics:
Momentum
,
Multibody systems
,
Simulation
,
Topology
,
Robots
,
Kinematics
,
Impulse (Physics)
,
Equations of motion
Low Order Continuum-Based Liquid Sloshing Formulation for Vehicle System Dynamics
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021022.
doi: https://doi.org/10.1115/1.4027836
Parameter Estimation of the FitzHugh–Nagumo Neuron Model Using Integrals Over Finite Time Periods
J. Comput. Nonlinear Dynam. March 2015, 10(2): 021023.
doi: https://doi.org/10.1115/1.4028601
Topics:
Algorithms
,
Computer simulation
,
Filters
,
Membranes
,
Noise (Sound)
,
Parameter estimation
,
Signals
,
Wavelets
Technical Brief
Dynamic Modeling of a Belt Driven Electromechanical XY Plotter Cutter
J. Comput. Nonlinear Dynam. March 2015, 10(2): 024501.
doi: https://doi.org/10.1115/1.4028334
Topics:
Belts
,
Control equipment
,
Dynamic modeling
,
Equations of motion
,
Friction
,
Motors
,
Shapes
,
Testing
,
Errors
,
Control systems
A Computational Analysis of Squeaking Hip Prostheses
J. Comput. Nonlinear Dynam. March 2015, 10(2): 024502.
doi: https://doi.org/10.1115/1.4028109
On the Approximation of Delayed Systems by Taylor Series Expansion
J. Comput. Nonlinear Dynam. March 2015, 10(2): 024503.
doi: https://doi.org/10.1115/1.4027180
Topics:
Approximation
,
Delays
,
Stability
,
Delay differential equations
ANCF Tire Assembly Model for Multibody System Applications
J. Comput. Nonlinear Dynam. March 2015, 10(2): 024504.
doi: https://doi.org/10.1115/1.4028479
Topics:
Tires
,
Manufacturing
,
Inertia (Mechanics)
,
Geometry
Discussion
Discussion: “Robust Stability and Stabilization of Fractional Order Systems Based on Uncertain Takagi–Sugeno Fuzzy Model With the Fractional Order 1 ≤ v ≤ 2” (Junmin, L., and Yuting, L., 2013, ASME J. Comput. Nonlinear Dynam., 8, p. 041005)
J. Comput. Nonlinear Dynam. March 2015, 10(2): 025501.
doi: https://doi.org/10.1115/1.4027199
Topics:
Stability
Email alerts
RSS Feeds
Sobolev-Type Nonlinear Hilfer Fractional Differential Equations With Control: Approximate Controllability Exploration
J. Comput. Nonlinear Dynam (November 2024)
Application of Laminate Theory to Plate Elements Based on Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam (November 2024)
Nonlinear Dynamics of a Magnetic Shape Memory Alloy Oscillator
J. Comput. Nonlinear Dynam