Skip Nav Destination
Issues
January 2006
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Foreword
Foreword
J. Comput. Nonlinear Dynam. January 2006, 1(1): 1–2.
doi: https://doi.org/10.1115/1.2004119
Topics:
Dynamics (Mechanics)
,
Multibody systems
,
Nonlinear dynamics
Research Papers
Computational Dynamics of Multibody Systems: History, Formalisms, and Applications
J. Comput. Nonlinear Dynam. January 2006, 1(1): 3–12.
doi: https://doi.org/10.1115/1.1961875
The Dynamic Response of Tuned Impact Absorbers for Rotating Flexible Structures
J. Comput. Nonlinear Dynam. January 2006, 1(1): 13–24.
doi: https://doi.org/10.1115/1.1991872
Topics:
Dynamic response
,
Flexible structures
,
Resonance
,
Rotation
,
Rotors
,
Vibration
,
Excitation
,
Dynamics (Mechanics)
,
Simulation
,
Steady state
Effect of the Linearization of the Kinematic Equations in Railroad Vehicle System Dynamics
J. Comput. Nonlinear Dynam. January 2006, 1(1): 25–34.
doi: https://doi.org/10.1115/1.1951783
Topics:
Equations of motion
,
Kinematics
,
Railroads
,
Rotation
,
Vehicles
,
Wheels
,
Wheelsets
,
Errors
,
Approximation
,
Rails
Global Dynamics of an Autoparametric System With Multiple Pendulums
J. Comput. Nonlinear Dynam. January 2006, 1(1): 35–46.
doi: https://doi.org/10.1115/1.1994879
Topics:
Pendulums
,
Equilibrium (Physics)
,
Dynamics (Mechanics)
Dynamic Modeling and Experimental Testing of a Piano Action Mechanism
J. Comput. Nonlinear Dynam. January 2006, 1(1): 47–55.
doi: https://doi.org/10.1115/1.1951782
Topics:
Friction
,
Hammers
,
String
,
Jacks (Lifting equipment)
,
Rotation
,
Dynamic models
,
Springs
,
Levers
,
Testing
Response Scenario and Nonsmooth Features in the Nonlinear Dynamics of an Impacting Inverted Pendulum
J. Comput. Nonlinear Dynam. January 2006, 1(1): 56–64.
doi: https://doi.org/10.1115/1.1944734
Topics:
Attractors
,
Bifurcation
,
Pendulums
,
Excitation
,
Nonlinear dynamics
,
Chaos
Control of Impact Microactuators for Precise Positioning
J. Comput. Nonlinear Dynam. January 2006, 1(1): 65–70.
doi: https://doi.org/10.1115/1.1951781
Topics:
Bifurcation
,
Displacement
,
Dynamics (Mechanics)
,
Microactuators
,
Feedback
,
Trajectories (Physics)
,
Chaos
Stability Analysis of Complex Multibody Systems
J. Comput. Nonlinear Dynam. January 2006, 1(1): 71–80.
doi: https://doi.org/10.1115/1.1944733
Topics:
Stability
,
Multibody systems
,
Damping
Verification of Absolute Nodal Coordinate Formulation in Flexible Multibody Dynamics via Physical Experiments of Large Deformation Problems
J. Comput. Nonlinear Dynam. January 2006, 1(1): 81–93.
doi: https://doi.org/10.1115/1.2008998
Topics:
Deformation
,
Finite element analysis
,
Plates (structures)
,
Shapes
,
Simulation
,
Pendulums
,
Damping
Dynamics and Stability of a Two Degree of Freedom Oscillator With an Elastic Stop
J. Comput. Nonlinear Dynam. January 2006, 1(1): 94–102.
doi: https://doi.org/10.1115/1.1961873
Topics:
Degrees of freedom
,
Stability
,
Shock (Mechanics)
,
Excitation
Passive Extraction of Dynamic Transfer Function From Arbitrary Ambient Excitations: Application to High-Speed Rail Inspection From Wheel-Generated Waves
Francesco Lanza di Scalea, Xuan Zhu, Margherita Capriotti, Albert Y. Liang, Stefano Mariani, Simone Sternini
J. Comput. Nonlinear Dynam. January 2006, 1(1): 011005–011005-12.
doi: https://doi.org/10.1115/1.4037517
Topics:
Engineering prototypes
,
Excitation
,
Inspection
,
Rails
,
Transfer functions
,
Wheels
,
Waves
,
Impulse (Physics)
,
Transportation systems
Email alerts
RSS Feeds
Nonlinear Dynamics of a Magnetic Shape Memory Alloy Oscillator
J. Comput. Nonlinear Dynam
Input–Output Finite-Time Bipartite Synchronization for Multiweighted Complex Dynamical Networks Under Dynamic Hybrid Triggering Mechanism
J. Comput. Nonlinear Dynam (November 2024)
A Universal and Efficient Quadrilateral Shell Element Based on Absolute Nodal Coordinate Formulation for Thin Shell Structures With Complex Surfaces
J. Comput. Nonlinear Dynam (November 2024)
Dynamic Simulation and Collision Detection for Flexible Mechanical Systems With Contact Using the Floating Frame of Reference Formulation
J. Comput. Nonlinear Dynam (November 2024)
An Efficient Numerical Approach to Solve Fractional Coupled Boussinesq Equations
J. Comput. Nonlinear Dynam