This paper is devoted to the robust modeling and prediction of limit cycle oscillations in nonlinear dynamic friction systems with a random friction coefficient. In recent studies, the Wiener–Askey and Wiener–Haar expansions have been proposed to deal with these problems with great efficiency. In these studies, the random dispersion of the friction coefficient is always considered within intervals near the Hopf bifurcation point. However, it is well known that friction induced vibrations—with respect to the distance of the friction dispersion interval to the Hopf bifurcation point—have different properties in terms of tansient, frequency and amplitudes. So, the main objective of this study is to analyze the capabilities of the Wiener–Askey (general polynomial chaos, multielement generalized polynomial chaos) and Wiener–Haar expansions to be efficient in the modeling and prediction of limit cycle oscillations independently of the location of the instability zone with respect to the Hopf bifurcation point.

References

1.
Ouyang
,
H.
, and
Mottershead
,
J. E.
,
2001
, “
Unstable Travelling Waves in the Friction-Induced Vibration of Discs
,”
J. Sound Vib.
,
248
, pp.
768
779
.10.1006/jsvi.2001.3720
2.
Sinou
,
J. J.
,
Dereure
,
O.
,
Mazet
,
F.
,
Thouverez
,
F.
, and
Jezequel
,
L.
,
2006
, “
Friction-Induced Vibration for an Aircraft Brake System—Part 1: Experimental Approach and Stability Analysis
,”
Int. J. Mech. Sci.
,
48
, pp.
536
554
.10.1016/j.ijmecsci.2005.12.002
3.
Sinou
,
J. J.
,
Thouverez
,
F.
,
Jezequel
,
L.
,
Dereure
,
O.
,
Mazet
,
F.
,
2006
, “
Friction-Induced Vibration fFor an Aircraft Brake System—Part 2: Non-Linear Dynamics
,”
Int. J. Mech. Sci.
,
48
, pp.
555
567
.10.1016/j.ijmecsci.2005.12.003
4.
Chevennement-Roux
,
C.
,
Dreher
,
T.
,
Alliot
,
P.
,
Aubry
,
E.
,
Lainé
,
J. P.
, and
Jézéquel
,
L.
,
2007
, “
Flexible Wiper System Dynamic Instabilities: Modeling and Experimental Validation
,”
Exp. Mech.
,
47
, pp.
201
210
.10.1007/s11340-006-9027-3
5.
Hervé
,
B.
,
Sinou
,
J.-J.
,
Mahé
,
H.
, and
Jézéquel
,
L.
,
2009
, “
Extension of the dDestabilization Paradox to Limit Cycle Amplitudes for a Nonlinear Self-Excited System Subject to Gyroscopic and Circulatory Actions
,”
J. Sound Vib.
,
323
, pp.
944
973
.10.1016/j.jsv.2009.01.023
6.
Rudd
,
M. J.
,
1976
, “
Wheel/Rail Noise—Part II: Wheel Squeal
,”
J. Sound Vib.
,
46
, pp.
381
394
.10.1016/0022-460X(76)90862-2
7.
Coudeyras
,
N.
,
Nacivet
,
S.
, and
Sinou
,
J.-J.
,
2009
, “
Periodic and Quasi Periodic Solutions for Multi-instabilities Involved in Brake Squeal
,”
J. Sound Vib.
,
328
, pp.
520
540
.10.1016/j.jsv.2009.08.017
8.
Oberst
,
S.
, and
Lai
,
J. C. S.
,
2011
, “
Statistical Analysis of Brake Squeal Noise
,”
J. Sound Vib.
,
330
(
12
), pp.
2978
2994
.10.1016/j.jsv.2010.12.021
9.
Oberst
,
S.
, and
Lai
,
J. C. S.
,
2011
, “
Chaos in Brake Squeal Noise
,”
J. Sound Vib.
,
330
(
5
), pp.
955
975
.10.1016/j.jsv.2010.09.009
10.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal and Chaos—Part I: Mechanics of Contact and Friction
,”
ASME Appl. Mech. Rev.
,
47
, pp.
209
226
.10.1115/1.3111079
11.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal and Chaos—Part II: Dynamics and Modeling
,”
ASME Appl. Mech. Rev.
,
47
, pp.
227
253
.10.1115/1.3111080
12.
Spurr
,
R. T.
,
1961
, “
A Theory of Brake Squeal
,”
Proc. Inst. Mech. Eng.
,
1
, pp.
33
40
.
13.
Earles
,
S. W. E.
, and
Lee
,
C. K.
,
1976
, “
Instabilities Arising From the Frictional Interaction of a Pin- Disc System Resulting in Noise Generation
,”
Trans. ASME
,
1
, pp.
81
86
.
14.
Earles
,
S.
, and
Chambers
,
P.
,
1987
, “
Disc Brake Squeal Noise Generation: Predicting Its Dependency on System Parameters Including Damping
,”
Int. J. Veh. Des.
,
8
, pp.
538
552
.
15.
Herve
,
B.
,
Sinou
,
J.-J.
,
Mahe
,
H.
, and
Jezequel
,
L.
,
2008
, “
Analysis of Squeal Noise and Mode Coupling Instabilities Including Damping and Gyroscopic Effects
,”
Eur. J. Mech. A/Solids
,
27
, pp.
141
160
.10.1016/j.euromechsol.2007.05.004
16.
Antoniou
,
S. S.
,
Cameron
,
A.
, and
Gentle
,
C. R.
,
1976
, “
The Friction-Speed Relation From Stick-Slip Data
,”
Wear
,
36
, pp.
235
254
.10.1016/0043-1648(76)90008-9
17.
Oden
,
J. T.
, and
Martins
,
J. A. C.
,
1985
, “
Models and Computational Methods for Dynamic Friction Phenomena
,”
Comput. Methods Appl. Mech. Eng.
,
52
, pp.
527
634
.10.1016/0045-7825(85)90009-X
18.
Van De
Velde
,
F.
, and
De
Baets
,
P.
,
1998
, “
A New Approach of Stick-Slip Based on Quasiharmonic Tangential Oscillations
,”
Wear
,
216
, pp.
15
26
.10.1016/S0043-1648(97)00296-2
19.
Van De
Velde
,
F.
, and
De
Baets
,
P.
,
1998
, “
The Relation Between Friction Force and Relative Speed During the Slip-Phase of Stick-Slip Cycle
,”
Wear
,
219
, pp.
220
226
.10.1016/S0043-1648(98)00213-0
20.
Kinkaid
,
N.
,
O'Reilly
,
O.
, and
Papadopoulos
,
P.
,
2003
, “
Automotive Disc Brake Squeal
,”
J. Sound Vib.
,
267
, pp.
105
166
.10.1016/S0022-460X(02)01573-0
21.
Ouyang
,
H.
,
Nack
,
W.
,
Yuan
,
Y.
, and
Chen
,
F.
,
2005
, “
Numerical Analysis of Automotive Disc Brake Squeal: A Review
,”
Int. J. Vehicle Noise Vib.
,
1
, pp.
207
231
.10.1504/IJVNV.2005.007524
22.
Millner
,
N.
,
1978
, “
An Analysis of Disc Brake Squeal
,” SAE Technical Paper No. 780332.
23.
D'Souza
,
A. F.
, and
Dweib
,
A. H.
,
1990
, “
Self-Excited Vibration Induced by Dry Friction—Part II: Stability and Limit-Cycle Analysis
,”
J. Sound Vib.
,
137
, pp.
177
190
.10.1016/0022-460X(90)90787-Z
24.
Eriksson
,
M.
, and
Jacobson
,
S.
,
2001
, “
Friction Behaviour and Squeal Generation of Disc Brakes at Low Speeds
,”
Proc. Inst. Mech. Eng.
,
215
, pp.
1245
1256
.10.1243/0954407011528789
25.
Hoffmann
,
N.
, and
Gaul
,
L.
,
2003
, “
Effects of Damping on Mode-Coupling Instability in Friction Induced Oscillations
,”
ZAMM
,
83
, pp.
524
534
.10.1002/zamm.200310022
26.
Meziane
,
A.
, and
Baillet
,
L.
,
2010
, “
Nonlinear Analysis of Vibrations Generated by a Contact With Friction
,”
Eur. J. Comput. Mech.
,
19
(
1–3
), pp.
305
316
.
27.
Ragot
,
P.
,
Berger
,
S.
, and
Aubry.
,
E.
,
2008
, “
Interval Approach Applied to Blades of Windscreens Wiper
,”
Int. J. Pure Appl. Math.
,
46
(
5
), pp.
643
648
.
28.
Lee
,
H. W.
,
Sandu
,
C.
, and
Holton
,
C.
,
2010
, “
Wheel-Rail Dynamic Model and Stochastic Analysis of the Friction in the Contact Path
,”
ASME Conf. Proc./2010 Joint Rail Conference
, Paper No. JRC2010-36229.
29.
Nechak
,
L.
,
Berger
,
S.
,
Aubry
,
E.
,
2011
, “
A Polynomial Chaos Approach to the Robust Analysis of the Dynamic Behavior of Friction Systems
,”
Eur. J. Mech. A/Solids
,
30
(
4
), pp.
594
607
.10.1016/j.euromechsol.2011.03.002
30.
Nechak
,
L.
,
Berger
,
S.
, and
Aubry
,
E.
,
2013
, “
Non-Intrusive Generalized Polynomial Chaos for the Stability Analysis of Uncertain Dynamic Friction Systems
,”
J. Sound Vib.
,
332
(
5
), pp.
1204
1205
.10.1016/j.jsv.2012.09.046
31.
Nechak
,
L.
,
Berger
,
S.
, and
Aubry
E.
,
2012
, “
Prediction of Random Self Friction Induced Vibrations in Uncertain Dry Friction Systems Using a Multi-Element Generalized Polynomial Chaos Approach
,”
J. Vibr. Acoust.
,
134
(
4
), pp.
041015
041029
.10.1115/1.4006413
32.
Nechak
,
L.
,
Berger
,
S.
, and
Aubry
E.
,
2012
, “
Wiener-Haar Expansion for the Modelling and Prediction of the Dynamic Behaviour of Nonlinear Uncertain Systems
,”
J. Dyn. Syst. Meas. Control
,
134
(
5
), pp.
051011
051022
.10.1115/1.4006371
33.
Beran
,
P. S.
,
Pettit
,
C. L.
, and
Millman
,
D. L.
,
2006
, “
Uncertainty Quantification of Limit-Cycle Oscillations
,”
J. Comput. Phys.
,
217
, pp.
217
247
.10.1016/j.jcp.2006.03.038
34.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
, pp.
897
936
.10.2307/2371268
35.
Ghanem
,
R.
,
Spanos
,
P. D.
,
1991
,
Stochastic Finite Elements: A Spectral Approach
,
Springer-Verlag
,
New York
.
36.
Cameron
,
H.
, and
Martin
,
W.
,
1947
, “
The Orthogonal Development of Nonlinear Functionals in Series of Fourier-Hermite Functional
,”
Ann. Math.
,
48
, pp.
385
392
.10.2307/1969178
37.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
Modeling Uncertainty in Steady State Diffusion Problems via Generalized Polynomial Chaos
,”
Comput. Methods. Appl. Mech. Eng.
,
191
(
43
), pp.
4927
4948
.10.1016/S0045-7825(02)00421-8
38.
Wan
,
X.
, and
Karniadakis
,
G. E.
,
2006
, “
Beyond Wiener–Askey Expansions: Handling Arbitrary PDFs
,”
J. Sci. Compt.
,
27
(
1–3
), pp.
455
464
.10.1007/s10915-005-9038-8
39.
Babuska
,
I.
,
Tempone
,
R.
, and
Zouraris
,
G. E.
,
2004
, “
Galerkin Finite Element Approximation of Stochastic Elliptic Partial Differential Equations
,”
SIAM J. Numer. Anal.
,
42
(
2
), pp.
800
825
.10.1137/S0036142902418680
40.
Babuska
,
I.
,
Nobile
,
F.
, and
Tempone
,
R.
,
2007
, “
A Stochastic Collocation Method for Elliptic Partial Differential Equations With Random Input Data
,”
SIAM J. Numer. Anal.
,
45
(
3
), pp.
1005
1034
.10.1137/050645142
41.
Crestaux
,
T.
,
Le Maitre
,
O.
, and
Martinez
,
J. M.
,
2009
, “
Polynomial Chaos Expansion for Sensitivity Analysis
,”
Reliab. Eng. Syst. Saf.
,
94
(
7
), pp.
1161
1172
.10.1016/j.ress.2008.10.008
42.
Wan
,
X.
, and
Karniadakis
,
G.
,
2005
, “
An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations
,”
J. Comput. Phys.
,
209
(
2
), pp.
617
642
.10.1016/j.jcp.2005.03.023
43.
Mallat
,
S.
,
1989
, “
A Theory for Multi-Resolution Signal Decomposition: The Wavelet Representation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
11
(
8
), pp.
674
694
.10.1109/34.192463
44.
Sinou
,
J.-J.
, and
Jezequel
,
L.
,
2007
, “
Mode Coupling Instability in Friction Induced Vibrations and its Dependency on System Parameters Including Damping
,”
Eur. J. Mech. A/Solids.
,
26
(
1
), pp.
107
122
.
45.
Hultèn
,
J.
,
1993
, “
Drum Break Squeal-A Self-Exciting Mechanism With Constant Friction
,”
Proceedings of the SAE Truck and Bus Meeting
, SAE Paper No. 932965.
46.
Sinou
,
J. J.
,
Fritz
,
G.
, and
Jezequel
,
L.
,
2007
, “
The Role of Damping and Definition of the Robust Damping Factor for a Self-Exciting Mechanism With Constant Friction
,”
J. Vib. Acoust.
,
129
(
3
), pp.
297
307
.10.1115/1.2730536
You do not currently have access to this content.