Elastically suspended loads can reduce the energetic cost and peak forces of legged robot locomotion. However, legged locomotion frequently exhibits multiple frequency modes due to variable leg contact times, body pitch and roll, and transient locomotion dynamics. We used a simple hexapod robot to investigate the effect of multiple frequency components on the energetic cost, dynamics, and peak forces of legged robot locomotion using a high-speed motion tracking system and the fast Fourier transform (FFT). The trajectories of the robot body and the suspended load revealed that the robot was excited by both a body pitching frequency and the primary locomotion frequency. Both frequency modes affected the dynamics of the legged robot as the natural frequency of the elastic load suspension was varied. When the natural frequency of the load suspension was reduced below the primary locomotion and body pitching frequencies, the robot consumed less average power with an elastically suspended load versus a rigidly attached load. To generalize the experimental results more broadly, a modified double-mass coupled-oscillator model with experimental parameters was shown to qualitatively predict the energetic cost and dynamics of legged robot locomotion with an elastically suspended load. The experimental results and the theoretical model could help researchers better understand locomotion with elastically suspended loads and design load suspension systems that are optimized to reduce the energetic cost and peak forces of legged locomotion.

References

1.
Rome
,
L. C.
,
Flynn
,
L.
, and
Yoo
,
T. D.
,
2006
, “
Biomechanics - Rubber Bands Reduce the Cost of Carrying Loads
,”
Nature
,
444
(
7122
), pp.
1023
1024
.10.1038/4441023a
2.
Ackerman
,
J.
, and
Seipel
,
J.
,
2013
, “
Energy Efficiency of Legged Robot Locomotion With Elastically Suspended Loads
,”
IEEE Trans. Robotics
,
29
(
29
), pp.
321
330
.10.1109/TRO.2012.2235698
3.
Ackerman
,
J.
, and
Seipel
,
J.
,
2011
, “Energetics of Bio-Inspired Legged Robot Locomotion With Elastically-Suspended Loads,” San Francisco, CA, pp.
203
208
.
4.
Ackerman
,
J.
,
Da
,
X.
, and
Seipel
,
J.
,
2012
, “
Energy Efficiency of Legged Robot Locomotion With Elastically-Suspended Loads Over a Range of Suspension Stiffnesses
,”
Chicago, IL
, IEEE Transactions on Robotics, pp.
55
59
.
5.
Ackerman
,
J.
,
Da
,
X.
, and
Seipel
,
J.
,
2012
, “
Mobility of Legged Robot Locomotion With Elastically-Suspended Loads Over Rough Terrain
,” CLAWAR 2012 – Proceedings of the Fifteenth International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines,
Baltimore, MD
,
2012
, pp.
555
562
.
6.
Xu
,
X.
,
Hsiang
,
S. M.
, and
Mirka
,
G. A.
,
2009
, “
The Effects of a Suspended-Load Backpack on Gait
,”
Gait Posture
,
29
(
1
), pp.
151
153
.10.1016/j.gaitpost.2008.06.008
7.
Kram
,
R.
,
1991
, “
Carrying Loads With Springy Poles
,”
J. Appl. Physiol.
,
71
(
3
), pp.
1119
1122
.
8.
Hoover
,
J.
, and
Meguid
,
S.
,
2011
, “
Performance Assessment of the Suspended-Load Backpack
,”
Int. J. Mech. Mater. Des.
,
7
(
2
), pp.
111
121
.10.1007/s10999-011-9153-7
9.
Foissac
,
M.
,
Millet
,
G. Y.
,
Geyssant
,
A.
,
Freychat
,
P.
, and
Belli
,
A.
,
2009
, “
Characterization of the Mechanical Properties of Backpacks and Their Influence on the Energetics of Walking
,”
J. Biomech.
,
42
(
2
), pp.
125
130
.10.1016/j.jbiomech.2008.10.012
10.
Pfau
,
T.
,
Spence
,
A.
,
Starke
,
S.
,
Ferrari
,
M.
, and
Wilson
,
A.
,
2009
, “
Modern Riding Style Improves Horse Racing Times
,”
Science
,
325
(
5938
), pp.
289
289
.10.1126/science.1174605
11.
Ackerman
,
J.
, and
Seipel
,
J.
,
2011
, “
Coupled-Oscillator Model of Locomotion Stability With Elastically-Suspended Loads
,”
Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE
, pp.
199
205
.
12.
Hirasaki
,
E.
,
Moore
,
S. T.
,
Raphan
,
T.
, and
Cohen
,
B.
,
1999
, “
Effects of Walking Velocity on Vertical Head and Body Movements During Locomotion
,”
Exper. Brain Res.
,
127
(
2
), pp.
117
130
.10.1007/s002210050781
13.
Herr
,
H. M.
, and
Mcmahon
,
T. A.
,
2001
, “
A Galloping Horse Model
,”
Int. J. Robotics Res.
,
20
(
1
), pp.
26
37
.10.1177/02783640122067255
14.
Kimura
,
H.
,
Fukuoka
,
Y.
,
Hada
,
Y.
, and
Takase
,
K.
,
2002
, “
Three-Dimensional Adaptive Dynamic Walking of a Quadruped - Rolling Motion Feedback to CPGs Controlling Pitching Motion
,”
Proceedings of the 2002 IEEE International Conference on Robotics 8 Automation Washington
, DC May 2002,
3
, pp.
2228
2233
.
15.
Brunello
,
E.
,
Reconditi
,
M.
,
Elangovan
,
R.
,
Linari
,
M.
,
Sun
,
Y.-B.
,
Narayanan
,
T.
,
Panine
,
P.
,
Piazzesi
,
G.
,
Irving
,
M.
, and
Lombardi
,
V.
,
2007
, “
Skeletal Muscle Resists Stretch by Rapid Binding of the Second Motor Domain of Myosin to Actin
,”
Proc. Natl. Acad. Sci.
,
104
(
50
), pp.
20114
20119
.10.1073/pnas.0707626104
16.
Abbott
,
B. C.
,
Bigland
,
B.
, and
Ritchie
,
J. M.
,
1952
, “
The Physiological Cost of Negative Work
,”
J. Physiol
,
117
(
3
), pp.
380
390
.
17.
Blickhan
,
R.
, and
Full
,
R. J.
,
1993
, “
Similarity in Multilegged Locomotion - Bouncing Like a Monopode
,”
J. Compar. Physiol A
,
173
(
5
), pp.
509
517
.10.1007/BF00197760
18.
Saranli
,
U.
,
Buehler
,
M.
, and
Koditschek
,
D. E.
,
2001
, “
RHex: A Simple and Highly Mobile Hexapod Robot
,”
Int. J. Robotics Res.
,
20
(
7
), pp.
616
631
.10.1177/02783640122067570
19.
Thomson
,
W. T.
, and
Dahleh
,
M. D.
,
1998
,
Theory of Vibration with Applications
,
Prentice Hall
,
Upper Saddle River, NJ
.
20.
Libby
,
T.
,
Moore
,
T. Y.
,
Chang-Siu
,
E.
Li
,
D.
,
Cohen
,
D. J.
,
Jusufi
,
A.
, and
Full
,
R. J.
,
2012
, “
Tail-Assisted Pitch Control in Lizards, Robots and Dinosaurs
,”
Nature
,
481
(
7380
), pp.
181
184
.10.1038/nature10710
21.
Johnson
,
A. M.
,
Libby
,
T.
,
Chang-Siu
,
E.
,
Tomizuka
,
M.
,
Full
,
R. J.
, and
Koditschek
,
D.
,
2012
, “
Tail Assisted Dynamic Self Righting
.”
Proceedings of the International Conference on Climbing and Walking Robots, Baltimore, MD, July 23–July 26, 2012
.
22.
Kuo
,
A. D.
,
2005
, “
Harvesting Energy by Improving the Economy of Human Walking
,”
Science
,
309
(
5741
), pp.
1686
1687
.10.1126/science.1118058
23.
Dudás
,
I.
,
2000
,
The Theory and Practice of Worm Gear Drives
,
Penton Press
,
London
.
You do not currently have access to this content.