This paper deals with the problem of stabilizing the unstable fixed points of a class of fractional-order chaotic systems via using static output feedback. At first, a static output feedback controller designed to stabilize a fixed point of a fractional-order chaotic system is considered. Then, the maximal allowable perturbation bound around the nominal value of the output feedback gain of the designed controller, such that the stability of the intended fixed point in the closed-loop system is guaranteed, is analytically determined. Also, some numerical examples are presented to confirm the validity of the analytical results of the paper.
Issue Section:
Research Papers
1.
Westerlund
, S.
, 1991, “Dead Matter has Memory!
” Phys. Scr.
0031-8949, 43
, pp. 174
–179
.2.
Westerlund
, S.
, and Ekstam
, L.
, 1994, “Capacitor Theory
,” IEEE Trans. Dielectr. Electr. Insul.
1070-9878, 1
(5
), pp. 826
–839
.3.
Sun
, H. G.
, Chen
, W.
, and Chen
, Y. Q.
, 2009, “Variable-Order Fractional Differential Operators in Anomalous Diffusion Modeling
,” Physica A
0378-4371, 388
(21
), pp. 4586
–4592
.4.
Cao
, H.
, Deng
, Z.
, Lim
, X.
, Yang
, J.
, and Qin
, Y.
, 2010, “Dynamic Modeling of Electrical Characteristics of Solid Oxide Fuel Cells Using Fractional Derivatives
,” Int. J. Hydrogen Energy
0360-3199, 35
(4
), pp. 1749
–1758
.5.
Sabatier
, J.
, Cugnet
, M.
, Laruelle
, S.
, Grugeon
, S.
, Sahut
, B.
, Oustaloup
, A.
, and Tarascon
, J. M.
, 2010, “A Fractional Order Model for Lead-Acid Battery Crankability Estimation
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 15
(5
), pp. 1308
–1317
.6.
Hartley
, T. T.
, Lorenzo
, C. F.
, and Qammer
, H. K.
, 1995, “Chaos in a Fractional Order Chua’s System
,” IEEE Trans. Circuits Syst., I: Regul. Pap.
1549-8328, 42
, pp. 485
–490
.7.
Tavazoei
, M. S.
, and Haeri
, M.
, 2008, “Chaotic Attractors in Incommensurate Fractional Order Systems
,” Physica D
0167-2789, 237
(20
), pp. 2628
–2637
.8.
Tavazoei
, M. S.
, and Haeri
, M.
, 2007, “A Necessary Condition for Double Scroll Attractor Existence in Fractional Order Systems
,” Phys. Lett. A
0375-9601, 367
(1–2
), pp. 102
–113
.9.
Tavazoei
, M. S.
, and Haeri
, M.
, 2010, “Stabilization of Unstable Fixed Points of Fractional-Order Systems by Fractional-Order Linear Controllers and Its Applications in Suppression of Chaotic Oscillations
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 132
, p. 021008
.10.
Tavazoei
, M. S.
, and Haeri
, M.
, 2008, “Stabilization of Unstable Fixed Points of Chaotic Fractional Order Systems by a State Fractional PI Controller
,” Eur. J. Control
0947-3580, 14
(3
), pp. 247
–257
.11.
Tavazoei
, M. S.
, Haeri
, M.
, Jafari
, S.
, Bolouki
, S.
, and Siami
, M.
, 2008, “Some Applications of Fractional Calculus in Suppression of Chaotic Oscillations
,” IEEE Trans. Ind. Electron.
0278-0046, 55
(11
), pp. 4094
–4101
.12.
Tavazoei
, M. S.
, Haeri
, M.
, and Jafari
, S.
, 2008, “Fractional Controller to Stabilize Fixed Points of Uncertain Chaotic Systems: Theoretical and Experimental Study
,” Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng.
, 222
(3
), pp. 175
–184
.13.
Li
, C.
, and Chen
, G.
, 2004, “Chaos in the Fractional Order Chen System and Its Control
,” Chaos, Solitons Fractals
0960-0779, 22
, pp. 549
–554
.14.
Lin
, W.
, 2007, “Global Existence Theory and Chaos Control of Fractional Differential Equations
,” J. Math. Anal. Appl.
0022-247X, 332
, pp. 709
–726
.15.
Zhou
, S.
, Li
, H.
, and Zhu
, Z.
, 2008, “Chaos Control and Synchronization in a Fractional Neuron Network System
,” Chaos, Solitons Fractals
0960-0779, 36
, pp. 973
–984
.16.
Podlubny
, I.
, 1999, Fractional Differential Equations
, Academic
, San Diego, CA
.17.
Higham
, N. J.
, 2008, Functions of Matrices: Theory and Computation
, SIAM
, Philadelphia, PA
.18.
Brewer
, J. W.
, 1978, “Kronecker Products and Matrix Calculus in System Theory
,” IEEE Trans. Circuits Syst.
0098-4094, 25
, pp. 772
–781
.19.
Petras
, I.
, 2009, “Stability of Fractional Order Systems With Rational Orders: A Survey
,” Fractional Calculus Appl. Anal.
1311-0454, 12
, pp. 269
–298
.20.
Anderson
, B. D. O.
, Bose
, N. K.
, and Jury
, E. I.
, 1974, “A Simple Test for Zeros of a Complex Polynomial in a Sector
,” IEEE Trans. Autom. Control
0018-9286, 19
, pp. 437
–438
.21.
Tavazoei
, M. S.
, and Haeri
, M.
, 2009, “A Note on the Stability of Fractional Order Systems
,” Math. Comput. Simul.
0378-4754, 79
, pp. 1566
–1576
.22.
Fu
, M.
, and Barmish
, B. R.
, 1988, “Maximal Unidirectional Perturbation Bounds for Stability of Polynomials and Matrices
,” Syst. Control Lett.
0167-6911, 11
, pp. 173
–179
.23.
Diethelm
, K.
, Ford
, N. J.
, and Freed
, A. D.
, 2002, “A Predictor Corrector Approach for the Numerical Solution of Fractional Differential Equations
,” Nonlinear Dyn.
0924-090X, 29
, pp. 3
–22
.24.
Tavazoei
, M. S.
, and Haeri
, M.
, 2007, “Unreliability of Frequency-Domain Approximation in Recognizing Chaos in Fractional-Order Systems
,” IET Signal Processing
, 1
(4
), pp. 171
–181
.25.
K.
Hirai
, 1999, “A Simple Criterion for the Occurrence of Chaos in Nonlinear Feedback Systems
,” Electronics and Communications in Japan, Part 3
, 82
(2
), pp. 11
–19
. 0002-782026.
Tavazoei
, M. S.
, and Haeri
, M.
, 2009, “Describing Function Based Methods for Predicting Chaos in a Class of Fractional Order Differential Equations
,” Nonlinear Dyn.
0924-090X, 57
, pp. 363
–373
.27.
Fradkov
, A. L.
, and Evans
, R. J.
, 2005, “Control of Chaos: Methods and Applications in Engineering
,” Annu. Rev. Control
1367-5788, 29
(1
), pp. 33
–56
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.