This paper deals with the problem of stabilizing the unstable fixed points of a class of fractional-order chaotic systems via using static output feedback. At first, a static output feedback controller designed to stabilize a fixed point of a fractional-order chaotic system is considered. Then, the maximal allowable perturbation bound around the nominal value of the output feedback gain of the designed controller, such that the stability of the intended fixed point in the closed-loop system is guaranteed, is analytically determined. Also, some numerical examples are presented to confirm the validity of the analytical results of the paper.

1.
Westerlund
,
S.
, 1991, “
Dead Matter has Memory!
Phys. Scr.
0031-8949,
43
, pp.
174
179
.
2.
Westerlund
,
S.
, and
Ekstam
,
L.
, 1994, “
Capacitor Theory
,”
IEEE Trans. Dielectr. Electr. Insul.
1070-9878,
1
(
5
), pp.
826
839
.
3.
Sun
,
H. G.
,
Chen
,
W.
, and
Chen
,
Y. Q.
, 2009, “
Variable-Order Fractional Differential Operators in Anomalous Diffusion Modeling
,”
Physica A
0378-4371,
388
(
21
), pp.
4586
4592
.
4.
Cao
,
H.
,
Deng
,
Z.
,
Lim
,
X.
,
Yang
,
J.
, and
Qin
,
Y.
, 2010, “
Dynamic Modeling of Electrical Characteristics of Solid Oxide Fuel Cells Using Fractional Derivatives
,”
Int. J. Hydrogen Energy
0360-3199,
35
(
4
), pp.
1749
1758
.
5.
Sabatier
,
J.
,
Cugnet
,
M.
,
Laruelle
,
S.
,
Grugeon
,
S.
,
Sahut
,
B.
,
Oustaloup
,
A.
, and
Tarascon
,
J. M.
, 2010, “
A Fractional Order Model for Lead-Acid Battery Crankability Estimation
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
15
(
5
), pp.
1308
1317
.
6.
Hartley
,
T. T.
,
Lorenzo
,
C. F.
, and
Qammer
,
H. K.
, 1995, “
Chaos in a Fractional Order Chua’s System
,”
IEEE Trans. Circuits Syst., I: Regul. Pap.
1549-8328,
42
, pp.
485
490
.
7.
Tavazoei
,
M. S.
, and
Haeri
,
M.
, 2008, “
Chaotic Attractors in Incommensurate Fractional Order Systems
,”
Physica D
0167-2789,
237
(
20
), pp.
2628
2637
.
8.
Tavazoei
,
M. S.
, and
Haeri
,
M.
, 2007, “
A Necessary Condition for Double Scroll Attractor Existence in Fractional Order Systems
,”
Phys. Lett. A
0375-9601,
367
(
1–2
), pp.
102
113
.
9.
Tavazoei
,
M. S.
, and
Haeri
,
M.
, 2010, “
Stabilization of Unstable Fixed Points of Fractional-Order Systems by Fractional-Order Linear Controllers and Its Applications in Suppression of Chaotic Oscillations
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
132
, p.
021008
.
10.
Tavazoei
,
M. S.
, and
Haeri
,
M.
, 2008, “
Stabilization of Unstable Fixed Points of Chaotic Fractional Order Systems by a State Fractional PI Controller
,”
Eur. J. Control
0947-3580,
14
(
3
), pp.
247
257
.
11.
Tavazoei
,
M. S.
,
Haeri
,
M.
,
Jafari
,
S.
,
Bolouki
,
S.
, and
Siami
,
M.
, 2008, “
Some Applications of Fractional Calculus in Suppression of Chaotic Oscillations
,”
IEEE Trans. Ind. Electron.
0278-0046,
55
(
11
), pp.
4094
4101
.
12.
Tavazoei
,
M. S.
,
Haeri
,
M.
, and
Jafari
,
S.
, 2008, “
Fractional Controller to Stabilize Fixed Points of Uncertain Chaotic Systems: Theoretical and Experimental Study
,”
Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng.
,
222
(
3
), pp.
175
184
.
13.
Li
,
C.
, and
Chen
,
G.
, 2004, “
Chaos in the Fractional Order Chen System and Its Control
,”
Chaos, Solitons Fractals
0960-0779,
22
, pp.
549
554
.
14.
Lin
,
W.
, 2007, “
Global Existence Theory and Chaos Control of Fractional Differential Equations
,”
J. Math. Anal. Appl.
0022-247X,
332
, pp.
709
726
.
15.
Zhou
,
S.
,
Li
,
H.
, and
Zhu
,
Z.
, 2008, “
Chaos Control and Synchronization in a Fractional Neuron Network System
,”
Chaos, Solitons Fractals
0960-0779,
36
, pp.
973
984
.
16.
Podlubny
,
I.
, 1999,
Fractional Differential Equations
,
Academic
,
San Diego, CA
.
17.
Higham
,
N. J.
, 2008,
Functions of Matrices: Theory and Computation
,
SIAM
,
Philadelphia, PA
.
18.
Brewer
,
J. W.
, 1978, “
Kronecker Products and Matrix Calculus in System Theory
,”
IEEE Trans. Circuits Syst.
0098-4094,
25
, pp.
772
781
.
19.
Petras
,
I.
, 2009, “
Stability of Fractional Order Systems With Rational Orders: A Survey
,”
Fractional Calculus Appl. Anal.
1311-0454,
12
, pp.
269
298
.
20.
Anderson
,
B. D. O.
,
Bose
,
N. K.
, and
Jury
,
E. I.
, 1974, “
A Simple Test for Zeros of a Complex Polynomial in a Sector
,”
IEEE Trans. Autom. Control
0018-9286,
19
, pp.
437
438
.
21.
Tavazoei
,
M. S.
, and
Haeri
,
M.
, 2009, “
A Note on the Stability of Fractional Order Systems
,”
Math. Comput. Simul.
0378-4754,
79
, pp.
1566
1576
.
22.
Fu
,
M.
, and
Barmish
,
B. R.
, 1988, “
Maximal Unidirectional Perturbation Bounds for Stability of Polynomials and Matrices
,”
Syst. Control Lett.
0167-6911,
11
, pp.
173
179
.
23.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
, 2002, “
A Predictor Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
0924-090X,
29
, pp.
3
22
.
24.
Tavazoei
,
M. S.
, and
Haeri
,
M.
, 2007, “
Unreliability of Frequency-Domain Approximation in Recognizing Chaos in Fractional-Order Systems
,”
IET Signal Processing
,
1
(
4
), pp.
171
181
.
25.
K.
Hirai
, 1999, “
A Simple Criterion for the Occurrence of Chaos in Nonlinear Feedback Systems
,”
Electronics and Communications in Japan, Part 3
,
82
(
2
), pp.
11
19
. 0002-7820
26.
Tavazoei
,
M. S.
, and
Haeri
,
M.
, 2009, “
Describing Function Based Methods for Predicting Chaos in a Class of Fractional Order Differential Equations
,”
Nonlinear Dyn.
0924-090X,
57
, pp.
363
373
.
27.
Fradkov
,
A. L.
, and
Evans
,
R. J.
, 2005, “
Control of Chaos: Methods and Applications in Engineering
,”
Annu. Rev. Control
1367-5788,
29
(
1
), pp.
33
56
.
You do not currently have access to this content.