We present an experimental procedure to track periodic orbits through a fold (saddle-node) bifurcation and demonstrate it with a parametrically excited pendulum experiment where the tracking parameter is the amplitude of the excitation. Specifically, we track the initially stable period-one rotation of the pendulum through its fold bifurcation and along the unstable branch. The fold bifurcation itself corresponds to the minimal amplitude that supports sustained rotation. Our scheme is based on a modification of time-delayed feedback in a continuation setting and we show for an idealized model that it converges with the same efficiency as classical proportional-plus-derivative control.
Issue Section:
Research Papers
1.
Doedel
, E.
, 2007, “Lecture Notes on Numerical Analysis of Nonlinear Equations
,” Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems
, B.
Krauskopf
, H.
Osinga
, and J.
Galán-Vioque
, eds., Springer-Verlag
, Dordrecht
, pp. 1
–49
.2.
Kuznetsov
, Y. A.
, 2004, “Elements of Applied Bifurcation Theory
,” Applied Mathematical Sciences
, 3rd ed., Springer-Verlag
, New York
, Vol. 12
.3.
Dhooge
, A.
, Govaerts
, W.
, and Kuznetsov
, Y.
, 2003, “MatCont: A Matlab Package for Numerical Bifurcation Analysis of ODEs
,” ACM Trans. Math. Softw.
0098-3500, 29
(2
), pp. 141
–164
.4.
Engelborghs
, K.
, Luzyanina
, T.
, and Samaey
, G.
, 2001, “DDE-BIFTOOL v.2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations
,” Report No. TW 330, Katholieke Universiteit Leuven.5.
Lust
, K.
, Roose
, D.
, Spence
, A.
, and Champneys
, A.
, 1998, “An Adaptive Newton-Picard Algorithm With Subspace Iteration for Computing Periodic Solutions
,” SIAM J. Sci. Comput. (USA)
1064-8275, 19
(4
), pp. 1188
–1209
.6.
Kevrekidis
, I.
, Gear
, C.
, and Hummer
, G.
, 2004, “Equation-Free: The Computer-Aided Analysis of Complex Multiscale Systems
,” AIChE J.
0001-1541, 50
(7
), pp. 1346
–1355
.7.
Sieber
, J.
, and Krauskopf
, B.
, 2008, “Control Based Bifurcation Analysis for Experiments
,” Nonlinear Dyn.
0924-090X, 51
(3
), pp. 365
–377
.8.
Blakeborough
, A.
, Williams
, M.
, Darby
, A.
, and Williams
, D.
, 2001, “The Development of Real-Time Substructure Testing
,” Philos. Trans. R. Soc. London, Ser. A
0962-8428, 359
, pp. 1869
–1891
.9.
Gonzalez-Buelga
, A.
, Wagg
, D.
, and Neild
, S.
, 2007, “Parametric Variation of a Coupled Pendulum-Oscillator System Using Real-Time Dynamic Substructuring
,” Struct. Control Health Monit.
1545-2255, 14
(7
), pp. 991
–1012
.10.
Sieber
, J.
, Gonzalez-Buelga
, A.
, Neild
, S.
, Wagg
, D.
, and Krauskopf
, B.
, 2008, “Experimental Continuation of Periodic Orbits Through a Fold
,” Phys. Rev. Lett.
0031-9007, 100
, p. 244101
.11.
Barton
, D.
, and Burrow
, S.
, 2009, “Numerical Continuation in a Physical Experiment: Investigation of a Nonlinear Energy Harvester
,” ASME
Paper No. DETC2009-87318.12.
Szemplińska-Stupnicka
, W.
, Tyrkiel
, E.
, and Zubrzycki
, A.
, 2000, “The Global Bifurcations That Lead to Transient Tumbling Chaos in a Parametrically Driven Pendulum
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274, 10
(9
), pp. 2161
–2175
.13.
Hirsch
, M.
, Pugh
, C.
, and Shub
, M.
, 1977, “Invariant Manifolds
,” Lecture Notes in Mathematics
, Springer-Verlag
, Berlin
, Vol. 583
.14.
Eyert
, V.
, 1996, “A Comparative Study on Methods for Convergence Acceleration of Iterative Vector Sequences
,” J. Comput. Phys.
0021-9991, 124
(2
), pp. 271
–285
.15.
Pyragas
, K.
, 1992, “Continuous Control of Chaos by Self-Controlling Feedback
,” Phys. Lett. A
0375-9601, 170
, pp. 421
–428
.16.
Guckenheimer
, J.
, and Holmes
, P.
, 1990, “Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
,”Applied Mathematical Sciences
, Springer-Verlag
, New York
, Vol. 42
.17.
Lehman
, B.
, and Weibel
, S.
, 1999, “Fundamental Theorems of Averaging for Functional Differential Equations
,” J. Differ. Equations
0022-0396, 152
, pp. 160
–190
.18.
Bates
, P.
, Lu
, K.
, and Zeng
, C.
, 1999, “Persistence of Overowing Manifolds for Semi-Flow
,” Commun. Pure Appl. Math.
0010-3640, 52
(8
), pp. 893
–1046
.19.
Roose
, D.
, and Szalai
, R.
, 2007, “Continuation and Bifurcation Analysis of Delay Differential Equations
,” Numerical Continuation Methods for Dynamical Systems: Path Following and Boundary Value Problems
, B.
Krauskopf
, H.
Osinga
, and J.
Galán-Vioque
, eds., Springer-Verlag
, Dordrecht
, pp. 51
–75
.20.
Nam
, K.
, and Arapostathis
, A.
, 1992, “A Sufficient Condition for Local Controllability of Nonlinear Systems Along Closed Orbits
,” IEEE Trans. Autom. Control
0018-9286, 37
(3
), pp. 378
–380
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.