Response of nonlinear systems subjected to harmonic, parametric, and random excitations is of importance in the field of structural dynamics. The transitional probability density function (PDF) of the random response of nonlinear systems under white or colored noise excitation (delta correlated) is governed by both the forward Fokker–Planck (FP) and the backward Kolmogorov equations. This paper presents a new approach for efficient numerical implementation of the path integral (PI) method in the solution of the FP equation for some nonlinear systems subjected to white noise, parametric, and combined harmonic and white noise excitations. The modified PI method is based on a non-Gaussian transition PDF and the Gauss–Legendre integration scheme. The effects of white noise intensity, amplitude, and frequency of harmonic excitation and the level of nonlinearity on stochastic jump and bifurcation behaviors of a hardening Duffing oscillator are also investigated.

1.
Ciğeroğlu
,
E.
, and
Özgüven
,
H. N.
, 2006, “
Nonlinear Vibration Analysis of Bladed Disks With Dry Friction Dampers
,”
J. Sound Vib.
0022-460X,
295
, pp.
1028
1043
.
2.
Chen
,
C. -L.
, and
Chen
,
L. -W.
, 2002, “
Random Vibration of a Rotating Blade With External and Internal Damping by the Finite Element Method
,”
J. Sound Vib.
0022-460X,
252
(
4
), pp.
697
715
.
3.
Cha
,
D.
, and
Sinha
,
A.
, 2006, “
Statistics of Response of a Mistuned and Frictionally Damped Bladed Disk Assembly Subjected to White Noise and Narrow Band Excitation
,”
Probab. Eng. Mech.
0266-8920,
21
, pp.
384
396
.
4.
Roberts
,
J. B.
, and
Spanos
,
P. D.
, 1990,
Random Vibration and Statistical Linearization
,
Wiley
,
New York
.
5.
Crandall
,
S. H.
, 1963, “
Perturbation Techniques for Random Vibration of Nonlinear Systems
,”
J. Acoust. Soc. Am.
0001-4966,
35
(
11
), pp.
1700
1705
.
6.
Khasminskii
,
R. Z.
, 1966, “
A Limit Theorem for the Solution of Differential Equations With Random Right-Hand Sides
,”
Theory Probab. Appl.
,
11
, pp.
390
406
.
7.
Wojtkiewicz
,
S. F.
,
Spencer
,
B. F.
, Jr.
, and
Bergman
,
L. A.
, 1996, “
On the Cumulant-Neglect Closure Method in Stochastic Dynamics
,”
Int. J. Non-Linear Mech.
0020-7462,
31
(
5
), pp.
657
684
.
8.
Nigam
,
N. C.
, 1983,
Introduction to Random Vibrations
,
MIT
,
Cambridge, MA
.
9.
Wehner
,
M. F.
, and
Wolfer
,
W. G.
, 1983, “
Numerical Evaluation of Path-Integral Solutions to Fokker-Planck Equation
,”
Phys. Rev. A
1050-2947,
27
(
5
), pp.
2663
2670
.
10.
Naess
,
A.
, and
Johnson
,
J. M.
, 1992, “
Response Statistics of Nonlinear Dynamics Systems by Path Integration
,”
Nonlinear Stochastic Mechanics
,
Proceedings of the IUTAM Symposium on Nonlinear Stochastic Mechanics
, Turin, Italy, Jul.1–5,
N.
Bellomo
and
F.
Casciatti
, eds.,
Springer-Verlag
,
Berlin
, pp.
401
414
.
11.
Naess
,
A.
, and
Moe
,
V.
, 2000, “
Efficient Path Integration Method for Nonlinear Dynamics System
,”
Probab. Eng. Mech.
0266-8920,
15
, pp.
221
231
.
12.
Kunert
,
A.
, 1991, “
Efficient Numerical Solution of Multidimensional Fokker-Planck Equations With Chaotic and Nonlinear Random Vibration
,”
Vibration Analysis—Analytical and Computational
,
T. C.
Huang
,
C. S.
Hsu
,
W. Q.
Feng
, eds.,
ASME
,
New York
,Vol.
DE-37
, pp.
51
60
.
13.
Yu
,
J. S.
,
Cai
,
G. Q.
, and
Lin
,
Y. K.
, 1997, “
A New Path Integration Procedure Based on Gauss–Legendre Scheme
,”
Int. J. Non-Linear Mech.
0020-7462,
32
, pp.
759
768
.
14.
Langley
,
R. S.
, 1985, “
A Finite Element Method for the Statistics of Non-Linear Random Vibration
,”
J. Sound Vib.
0022-460X,
101
(
1
), pp.
41
54
.
15.
Kumar
,
P.
, and
Narayanan
,
S.
, 2006, “
Solution of Fokker-Planck Equation by Finite Element and Finite Difference Methods for Nonlinear System
,”
Sadhana: Proc., Indian Acad. Sci.
0256-2499,
31
(
04
), pp.
455
473
.
16.
Spencer
,
B. F.
, Jr.
, and
Bergman
,
L. A.
, 1993, “
On the Numerical Solution of the Fokker-Equations for Nonlinear Stochastic Systems
,”
Nonlinear Dyn.
0924-090X,
4
, pp.
357
372
.
17.
Wojtkiewicz
,
S. F.
,
Bergman
,
L. A.
, and
Spencer
,
B. F.
, Jr.
, 1994, “
Robust Numerical Solution of the Fokker-Planck-Kolmogorov Equation for Two Dimensional Stochastic Dynamical Systems
,” Department of Aeronautical and Astronautical Engineering, University of Illinois at Urbana-Champaign, Technical Report No. AAE 94-08.
18.
Wojtkiewicz
,
S. F.
,
Bergman
,
L. A.
, and
Spencer
,
B. F.
, Jr.
, 1997, “
High Fidelity Numerical Solutions of the Fokker-Planck Equation
,”
Proceedings of the ICOSSAR ‘97, The Seventh International Conference on Structural Safety and Reliability
, Kyoto, Japan, Nov., pp.
24
28
.
19.
Nayfeh
,
A. H.
, and
Serhan
,
S. J.
, 1990, “
Response Statistics of Nonlinear Systems to Combined Deterministic and Random Excitations
,”
Int. J. Non-Linear Mech.
0020-7462,
25
, pp.
493
509
.
20.
Zhu
,
W. Q.
,
Lu
,
M. Q.
, and
Wu
,
Q. T.
, 1993, “
Stochastic Jump and Bifurcation of a Duffing Oscillator Under Narrow-Band Excitation
,”
J. Sound Vib.
0022-460X,
165
(
2
), pp.
285
304
.
21.
Yu
,
J. S.
, and
Lin
,
Y. K.
, 2004, “
Numerical Path Integration of a Non-Homogeneous Markov Process
,”
Int. J. Non-Linear Mech.
0020-7462,
39
, pp.
1493
1500
.
22.
Ibrahim
,
R. A.
, 2006, “
Excitation-Induced Stability and Phase Transition: A Review
,”
J. Vib. Control
1077-5463,
12
(
10
), pp.
1093
1170
.
23.
Soong
,
T.
, and
Grigoriu
,
M.
, 1993,
Random Vibration of Mechanical and Structural Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
24.
Wong
,
E.
, and
Zakai
,
M.
, 1965, “
On the Relation Between Ordinary and Stochastic Differential Equation
,”
Int. J. Eng. Sci.
0020-7225,
3
, pp.
213
229
.
25.
Risken
,
H.
, 1989,
The Fokker-Planck Equation: Methods of Solution and Applications
,
Springer-Verlag
,
New York
.
26.
Zhang
,
D. S.
,
Wei
,
G. W.
,
Kouri
,
D. J.
, and
Hoffman
,
D. K.
, 1997, “
Numerical Method for the Nonlinear Fokker-Planck Equation
,”
Phys. Rev. E
1063-651X,
56
(
1
), pp.
1197
1206
.
27.
Dimentberg
,
M. F.
, 1982, “
Exact Solution to a Certain Non-Linear Random Vibration Problem
,”
Int. J. Non-Linear Mech.
0020-7462,
17
(
4
), pp.
231
236
.
You do not currently have access to this content.