The present research intends to investigate the characteristics of the periodicity ratio and its implementation in analyzing the nonlinear behavior of dynamic systems governed by second-order differential equations. Numerical analyses on the nonlinear dynamic systems with employment of the periodicity ratio for diagnosing chaotic, regular, and irregular behaviors of dynamic systems are performed. To characterize the approach with periodicity ratio in distinguishing different behaviors of the nonlinear dynamic systems, a comparison of periodicity ratio with the widely used Lyapunov exponent in numerically assessing the responses of nonlinear dynamic systems is presented.
1.
Nayfeh
, A. H.
, and Mook
, D. T.
, 1988, Nonlinear Dynamics
, American Society of Mechanical Engineers
, New York
.2.
Strogatz
, S. H.
, 2000, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
, Westview Press
, Cambridge, MA
.3.
Weaver
, W.
, Jr., Timoshenko
, S.
, and Young
, D. H.
, 1990, Vibration Problems in Engineering
, Wiley
, New York
.4.
Lakshmanan
, M.
, and Rajasekar
, S.
, 2003, Nonlinear Dynamics: Integrability, Chaos, and Patterns
, Springer
, New York
.5.
Wolf
, A.
, Swift
, J. B.
, Swinney
, H. L.
, and Vastano
, J. A.
, 1985, “Determining Lyapunov Exponents From a Time Series
,” Physica D
0167-2789, 16
, pp. 285
–317
.6.
Rong
, H.
, Meng
, G.
, Wang
, X.
, Xu
, W.
, and Fang
, T.
, 2002, “Invariant Measures and Lyapunov-Exponents for Stochastic Mathieu System
,” Nonlinear Dyn.
0924-090X, 30
, pp. 313
–321
.7.
Shahverdian
, A. Yu.
, and Apkarian
, A. V.
, 2007, “A Difference Characteristic for One-Dimensional Deterministic Systems
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 12
(3
), pp. 233
–242
.8.
Terzic
, B.
, and Kandrup
, H. E.
, 2003, “Semi-Analytic Estimates of Lyapunov Exponents in Lower-Dimensional Systems
,” Phys. Lett. A
0375-9601, 311
, 165
–171
.9.
Lu
, J.
, Yang
, G.
, Oh
, H.
, and Luo
, A. J.
, 2005, “Computing Lyapunov-Exponents of Continuous Dynamical Systems: Method of Lyapunov Vectors
,” Chaos, Solitons Fractals
0960-0779, 23
, pp. 1879
–1892
.10.
He
, D.
, Xu
, J.
, Chen
, Y.
, and Tan
, N.
, 1999, “A Simple Method for the Computation of the Conditional Lyapunov Exponents
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 4
(2
), pp. 113
–117
.11.
Dai
, L.
, and Singh
, M. C.
, 1997, “Diagnosis of Periodic and Chaotic Responses in Vibratory Systems
,” J. Acoust. Soc. Am.
0001-4966, 102
(6
), pp. 3361
–3371
.12.
Lu
, C.
, 2007, “Chaos of a Parametrically Excited Undamped Pendulum
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 12
(1
), pp. 45
–57
.13.
Yamapi
, R.
, and Aziz-Alaoui
, M. A.
, 2007, “Vibration Analysis and Bifurcations in the Self-Sustained Electromechanical System With Multiple Functions
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 12
(8
), pp. 1534
–1549
.14.
Lazzouni
, S. A.
, Bowong
, S.
, Kakmeni
, F. M. M.
, Cherki
, B.
, and Ghouali
, N.
, 2007, “Chaos Control Using Small-Amplitude Damping Signals of the Extended Duffing Equation
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 12
(5
), pp. 804
–813
.15.
Baker
, G. L.
, and Gollub
, J. P.
, 1991, Chaotic Dynamics: An Introduction
, Cambridge University Press
, Cambridge, England
.16.
Dai
, L.
, and Singh
, M. C.
, 2003, “A New Approach With Piecewise-Constant Arguments to Approximate and Numerical Solutions of Oscillatory Problems
,” J. Sound Vib.
0022-460X, 263
(3
), pp. 535
–548
.17.
Ueda
, Y.
, 1980, “Steady Motions Exhibited by Duffing’s Equations: A Picture Book of Regular and Chaotic Motions
,” in New Approaches to Nonlinear Problems in Dynamics
, P. J.
Holmes
, ed., SIAM
, Philadelphia
, pp. 311
–322
.18.
Dai
, L.
, and Singh
, M. C.
, 1998, “Periodic, Quasiperiodic and Chaotic Behavior of a Driven Froude Pendulum
,” Int. J. Non-Linear Mech.
0020-7462, 33
(6
), pp. 947
–965
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.