Abstract

Laminated plates have a wide range of applications in engineering, and their flexibility becomes increasingly significant with the development of lightweighting technology. The absolute nodal coordinate formulation (ANCF) has emerged as a promising approach for modeling flexible multibody dynamics. However, researches on thick laminated plates with shear deformation for multiflexible systems remain limited. To investigate the application of ANCF plate elements for laminated plates, this article introduces a new laminated plate element that considers shear deformation. We utilize the fully parameterized ANCF plate element to analyze laminated composite structures, focusing specifically on their layers in the thickness direction. By employing a structural mechanics approach, the study achieves a uniform stiffness matrix that can adapt to laminated plates with shear deformation and can be precomputed in advance. Additionally, a summary of a thin laminated plate element is provided for comparison. Both plate elements are composed by layers, and their elastic forces and Jacobian matrices are derived using first-order shear theory and Kirchhoff's theory, respectively. The effectiveness and accuracy of the proposed elements are validated through a series of benchmark problems encompassing modal, static, and dynamic investigations. The study thoroughly analyzes the results compared with the commercial finite element method software abaqus and analytical approach. The findings demonstrate that the methods effectively address laminated plates.

References

1.
Otsuka
,
K.
,
Makihara
,
K.
, and
Sugiyama
,
H.
,
2022
, “
Recent Advances in the Absolute Nodal Coordinate Formulation: Literature Review From 2012 to 2020
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
8
), p.
080803
.10.1115/1.4054113
2.
Shabana
,
A. A.
,
2023
, “
An Overview of the ANCF Approach, Justifications for Its Use, Implementation Issues, and Future Research Directions
,”
Multibody Syst. Dyn.
,
58
(
3–4
), pp.
433
477
.10.1007/s11044-023-09890-z
3.
Mikkola
,
A. M.
, and
Shabana
,
A. A.
,
2000
, “
A Larger Deformation Plate Element for Multibody Applications
,”
University of Illinois at Chicago
,
Chicago, IL
, Report No.
MBS00-6-UIC.
https://apps.dtic.mil/sti/pdfs/ADA384568.pdf
4.
Mikkola
,
A. M.
, and
Shabana
,
A. A.
,
2003
, “
A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications
,”
Multibody Syst. Dyn.
,
9
(
3
), pp.
283
309
.10.1023/A:1022950912782
5.
Dufva
,
K.
, and
Shabana
,
A. A.
,
2005
, “
Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
219
(
4
), pp.
345
355
.10.1243/146441905X50678
6.
Mikkola
,
A. M.
, and
Matikainen
,
M. K.
,
2006
, “
Development of Elastic Forces for a Large Deformation Plate Element Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
2
), pp.
103
108
.10.1115/1.1961870
7.
Matikainen
,
M.
,
Schwab
,
A.
, and
Mikkola
,
A.
,
2009
, “
Comparison of Two Moderately Thick Plate Elements Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Dynamics 2009, ECCOMAS
, Warsaw, Poland, 29 June–2 July, pp.
1
21
.http://bicycle.tudelft.nl/schwab/Publications/MatikainenSchwabMikkola2009.pdf
8.
Yamashita
,
H.
,
Valkeapää
,
A. I.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2015
, “
Continuum Mechanics Based Bilinear Shear Deformable Shell Element Using Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051012
.10.1115/1.4028657
9.
Valkeapää
,
A. I.
,
Yamashita
,
H.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2015
, “
On the Use of Elastic Middle Surface Approach in the Large Deformation Analysis of Moderately Thick Shell Structures Using Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
80
(
3
), pp.
1133
1146
.10.1007/s11071-015-1931-6
10.
Zhang
,
Z.
,
Ren
,
W.
, and
Zhou
,
W.
,
2022
, “
Research Status and Prospect of Plate Elements in Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
236
(
3
), pp.
357
367
.10.1177/14644193221098866
11.
Ren
,
H.
, and
Fan
,
W.
,
2023
, “
An Adaptive Triangular Element of Absolute Nodal Coordinate Formulation for Thin Plates and Membranes
,”
Thin-Walled Struct.
,
182
, p.
110257
.10.1016/j.tws.2022.110257
12.
Liu
,
C.
,
Tian
,
Q.
, and
Hu
,
H.
,
2011
, “
Dynamics of a Large Scale Rigid–Flexible Multibody System Composed of Composite Laminated Plates
,”
Multibody Syst. Dyn.
,
26
(
3
), pp.
283
305
.10.1007/s11044-011-9256-9
13.
Patel
,
M.
,
Orzechowski
,
G.
,
Tian
,
Q.
, and
Shabana
,
A. A.
,
2015
, “
A New Multibody System Approach for Tire Modeling Using ANCF Finite Elements
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
230
(
1
), pp.
69
84
.10.1177/14644193155746
14.
You
,
B.
,
Liang
,
D.
,
Yu
,
X.
, and
Wen
,
X.
,
2021
, “
Deployment Dynamics for Flexible Deployable Primary Mirror of Space Telescope With Paraboloidal and Laminated Structure by Using Absolute Node Coordinate Method
,”
Chin. J. Aeronaut.
,
34
(
4
), pp.
306
319
.10.1016/j.cja.2020.07.012
15.
Yamashita
,
H.
,
Valkeapää
,
A. I.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2014
, “
Bi-Linear Shear Deformable ANCF Shell Element Using Continuum Mechanics Approach
,”
ASME
Paper No. DETC2014-35349.10.1115/DETC2014-35349
16.
Yamashita
,
H.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2015
, “
Development of Shear Deformable Laminated Shell Element and Its Application to ANCF Tire Model
,”
ASME
Paper No. DETC2015-46173.10.1115/DETC2015-46173
17.
Sugiyama
,
H.
,
Yamashita
,
H.
, and
Jayakumar
,
P.
,
2015
, “
ANCF Tire Models for Multibody Ground Vehicle Simulation
,”
Proceedings of the Fourth International Tyre Colloquium: Tyre Models for Vehicle Dynamics Analysis
, Surrey, UK, Apr. 20–21, pp.
102
110
.
18.
Yamashita
,
H.
,
Jayakumar
,
P.
,
Alsaleh
,
M.
, and
Sugiyama
,
H.
,
2018
, “
Physics-Based Deformable Tire–Soil Interaction Model for Off-Road Mobility Simulation and Experimental Validation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021002
.10.1115/1.4037994
19.
Zhang
,
W.
,
Zhu
,
W.
, and
Zhang
,
S.
,
2020
, “
Deployment Dynamics for a Flexible Solar Array Composed of Composite-Laminated Plates
,”
J. Aerosp. Eng.
,
33
(
6
), p.
04020071
.10.1061/(ASCE)AS.1943-5525.0001186
20.
Nada
,
A. A.
, and
El-Assal
,
A. M.
,
2012
, “
Absolute Nodal Coordinate Formulation of Large-Deformation Piezoelectric Laminated Plates
,”
Nonlinear Dyn.
,
67
(
4
), pp.
2441
2454
.10.1007/s11071-011-0158-4
21.
Zhang
,
W.
, and
Liu
,
J.
,
2016
, “
Dynamic Modeling of Composite Thin-Plate Multibody Systems With Large Deformation
,”
J. Vib. Shock
,
35
(
8
), pp.
27
35
(in Chinese).https://jvs.sjtu.edu.cn/EN/Y2016/V35/I8/27#2
22.
Zhang
,
Z.
,
Zhou
,
W.
,
Gao
,
S.
,
Wan
,
M.
, and
Zhang
,
W.
,
2021
, “
A Novel Computational Method for Dynamic Analysis of Flexible Sandwich Plates Undergoing Large Deformation
,”
Arch. Appl. Mech.
,
91
(
10
), pp.
4069
4080
.10.1007/s00419-021-02022-z
23.
Yu
,
H.
,
Zhao
,
Z.
,
Yang
,
D.
, and
Gao
,
C.
,
2020
, “
A New Composite Plate/Plate Element for Stiffened Plate Structures Via Absolute Nodal Coordinate Formulation
,”
Compos. Struct.
,
247
, p.
112431
.10.1016/j.compstruct.2020.112431
24.
Yu
,
H.
,
Li
,
Y.
,
Chen
,
A.
, and
Wang
,
H.
,
2020
, “
Dynamic Performance of Flexible Composite Structures With Dielectric Elastomer Actuators Via Absolute Nodal Coordinate Formulation
,”
Multibody Dynamics 2019: Proceedings of the Ninth ECCOMAS Thematic Conference on Multibody Dynamics
,
Duisburg, Germany, Aug. 26
, pp.
223
230
.10.1007/978-3-030-23132-3_27
25.
Schoeftner
,
J.
,
Buchberger
,
G.
,
Brandl
,
A.
, and
Irschik
,
H.
,
2015
, “
Theoretical Prediction and Experimental Verification of Shape Control of Beams With Piezoelectric Patches and Resistive Circuits
,”
Compos. Struct.
,
133
, pp.
746
755
.10.1016/j.compstruct.2015.07.026
26.
Miravete
,
A.
, and
Reddy
,
J. N.
,
1995
,
Practical Analysis of Composite Laminates
,
CRC Press
,
Boca Raton, FL
.
27.
Kollár
,
L. P.
, and
Springer
,
G. S.
,
2003
,
Mechanics of Composite Structures
,
Cambridge University Press
,
New York
.
28.
Schwab
,
A.
,
Gerstmayr
,
J.
, and
Meijaard
,
J.
,
2007
, “
Comparison of Three-Dimensional Flexible Thin Plate Elements for Multibody Dynamic Analysis: Finite Element Formulation and Absolute Nodal Coordinate Formulation
,”
ASME
Paper No. DETC2007-34754.10.1115/DETC2007-34754
29.
Shabana
,
A. A.
,
2018
,
Computational Continuum Mechanics
, 3rd ed.,
Wiley
,
New York
.
30.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2003
, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
34
(
1/2
), pp.
53
74
.10.1023/B:NODY.0000014552.68786.bc
31.
Gonzalez
,
O.
, and
Stuart
,
A. M.
,
2008
,
A First Course in Continuum Mechanics
, Vol.
42
,
Cambridge University Press
,
Cambridge, UK
.
32.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031016
.10.1115/1.4023487
33.
Yu
,
H.
,
Zhao
,
C.
,
Zhao
,
Y.
,
Wang
,
H.
, and
Lai
,
X.
,
2015
, “
Deformation of Thin-Walled Structures in Assemble Process With Absolute Nodal Coordinate Formulation
,”
Intelligent Robotics and Applications
, Portsmouth, UK, Aug. 24–27, pp.
619
629
.10.1007/978-3-319-22876-1_54
34.
Gerstmayr
,
J.
,
Matikainen
,
M. K.
, and
Mikkola
,
A. M.
,
2008
, “
A Geometrically Exact Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
20
(
4
), pp.
359
384
.10.1007/s11044-008-9125-3
35.
Matikainen
,
M. K.
,
Valkeapää
,
A. I.
,
Mikkola
,
A. M.
, and
Schwab
,
A.
,
2014
, “
A Study of Moderately Thick Quadrilateral Plate Elements Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
31
(
3
), pp.
309
338
.10.1007/s11044-013-9383-6
36.
Shabana
,
A. A.
,
Desai
,
C. J.
,
Grossi
,
E.
, and
Patel
,
M.
,
2020
, “
Generalization of the Strain-Split Method and Evaluation of the Nonlinear ANCF Finite Elements
,”
Acta Mech.
,
231
(
4
), pp.
1365
1376
.10.1007/s00707-019-02558-w
You do not currently have access to this content.