Abstract

This work presents a novel cluster based optimization procedure for estimating parameter values that yield stable, periodic responses with desired amplitude in nonlinear vibrating systems. The parameter values obtained by conventional nonlinear optimization schemes, with minimization of amplitude as the objective, may not furnish periodic and stable responses. Moreover, global optimization strategies may converge to isolated optima that are sensitive to parametric perturbations. In practical engineering systems, unstable or isolated optimal orbits are not practically realizable. To overcome these limitations, the proposed method tries to converge to a cluster in the r-dimensional parameter space in which the design specifications including the specified optimality, periodicity, stability and robustness are satisfied. Thus, it eliminates the need for computationally expensive bifurcation studies to locate stable, periodic parameter regimes before optimization. The present method is based on a hybrid scheme which involves the algebraic form of the governing equations in screening phase and its differential form in the selection phase. In the screening phase, force and energy balance conditions are used to rephrase the nonlinear governing equations in terms of the design parameter vector. These rephrased equations are reduced to algebraic form using a harmonic balance procedure which also specifies the desired amplitude and frequency of the response. An error norm based on this algebraic form is defined and is used to contract the search bounds in the parameter space leading to convergence to a cluster. The selection phase of the algorithm uses shooting method coupled with evaluation of Floquet multipliers to retain only those vectors in the arrived cluster yielding stable periodic solutions. The method is validated with Den Hartog's vibration absorbers and is then applied to vibration absorbers with material nonlinearity and vibration isolators with geometric nonlinearity. In both the cases, the converged cluster is shown to yield stable, periodic responses satisfying the amplitude condition. Parametric perturbation studies are conducted on the cluster to illustrate its robustness. The use of algebraic form of governing equations in the screening phase drastically reduces the computational time needed to converge to the cluster. The fact that the present method converges to a cluster in the parameter space rather than to a single parameter value offers the designer more freedom to choose the design vector from inside the cluster. It also ensures that the design is robust to small changes in parameter values.

References

1.
Strogatz
,
S. H.
,
2018
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
,
CRC Press
, New York.
2.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
2008
,
Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods
,
Wiley
, Hoboken, NJ.
3.
Seydel
,
R.
,
2009
,
Practical Bifurcation and Stability Analysis
, Vol.
5
,
Springer Science & Business Media
, New York.
4.
Zhang
,
L.
,
Gao
,
H.
,
Chen
,
Z.
,
Sun
,
Q.
, and
Zhang
,
X.
,
2013
, “
Multi-Objective Global Optimal Parafoil Homing Trajectory Optimization Via Gauss Pseudospectral Method
,”
Nonlinear Dyn.
,
72
(
1–2
), pp.
1
8
.10.1007/s11071-012-0586-9
5.
Shokri-Ghaleh
,
H.
, and
Alfi
,
A.
,
2014
, “
Optimal Synchronization of Teleoperation Systems Via Cuckoo Optimization Algorithm
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2359
2376
.10.1007/s11071-014-1589-5
6.
Khan
,
J. A.
,
Raja
,
M. A. Z.
,
Syam
,
M. I.
,
Tanoli
,
S. A. K.
, and
Awan
,
S. E.
,
2015
, “
Design and Application of Nature Inspired Computing Approach for Nonlinear Stiff Oscillatory Problems
,”
Neural Comput. Appl.
,
26
(
7
), pp.
1763
1780
.10.1007/s00521-015-1841-z
7.
Jiang
,
X.-Z.
, and
Jian
,
J.-b.
,
2013
, “
A Sufficient Descent Dai–Yuan Type Nonlinear Conjugate Gradient Method for Unconstrained Optimization Problems
,”
Nonlinear Dyn.
,
72
(
1–2
), pp.
101
112
.10.1007/s11071-012-0694-6
8.
Jiang
,
X.-Z.
, and
Jian
,
J.-B.
,
2014
, “
Two Modified Nonlinear Conjugate Gradient Methods With Disturbance Factors for Unconstrained Optimization
,”
Nonlinear Dyn.
,
77
(
1–2
), pp.
387
397
.10.1007/s11071-014-1303-7
9.
Padmanabhan
,
C.
, and
Singh
,
R.
,
1995
, “
Analysis of Periodically Excited Non-Linear Systems by a Parametric Continuation Technique
,”
J. Sound Vib.
,
184
(
1
), pp.
35
58
.10.1006/jsvi.1995.0303
10.
Balaram
,
B.
,
Narayanan
,
M. D.
, and
Rajendrakumar
,
P. K.
,
2012
, “
Optimal Design of Multi-Parametric Nonlinear Systems Using a Parametric Continuation Based Genetic Algorithm Approach
,”
Nonlinear Dyn.
,
67
(
4
), pp.
2759
2777
.10.1007/s11071-011-0187-z
11.
Narayanan
,
M. D.
,
Premchand
,
V. P.
, and
Sajith
,
A. S.
,
2019
, “
A New Cluster-Based Harmonic Balance Aided Optimization Procedure With Application to Nonlinear Vibration Absorbers
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
7
), p.
071007
.10.1115/1.4043527
12.
Narayanan
,
M. D.
,
Vinod
,
V.
,
Balaram
,
B.
, and
Sen
,
M.
,
2017
, “
Effect of Configuration Symmetry on Synchronization in a Van Der Pol Ring With Nonlocal Interactions
,”
Nonlinear Dyn.
,
89
(
3
), pp.
2103
2114
.10.1007/s11071-017-3572-4
13.
Watts
,
P.
,
1883
, “
On the Method of Reducing the Rolling of Ships at Sea
,”
Trans. Inst. Naval Arch.
,
24
, pp.
165
190
.http://mararchief.tudelft.nl/catalogue/entries/16328/
14.
Frahm
,
H.
,
1911
, “
A Device for Damping Vibrations of Bodies
,” U.S. Patent No. 989,958.
15.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
,
Dover Books on Engineering, McGraw-Hill
,
New York
.
16.
Hunt
,
J.
, and
Nissen
,
J. C.
,
1982
, “
The Broadband Dynamic Vibration Absorber
,”
J. Sound Vib.
,
83
(
4
), pp.
573
578
.10.1016/S0022-460X(82)80108-9
17.
Soom
,
A.
, and
Lee
,
M.
,
1983
, “
Optimal Design of Linear and Nonlinear Vibration Absorbers for Damped Systems
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
105
(
1
), pp.
112
119
.10.1115/1.3269054
18.
Brzeski
,
P.
,
Perlikowski
,
P.
, and
Kapitaniak
,
T.
,
2014
, “
Numerical Optimization of Tuned Mass Absorbers Attached to Strongly Nonlinear Duffing Oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
1
), pp.
298
310
.10.1016/j.cnsns.2013.06.001
19.
Detroux
,
T.
,
Habib
,
G.
,
Masset
,
L.
, and
Kerschen
,
G.
,
2015
, “
Performance Robustness and Sensitivity Analysis of the Nonlinear Tuned Vibration Absorber
,”
Mech. Syst. Signal Process.
,
60–61
(
2
), pp.
799
809
.10.1016/j.ymssp.2015.01.035
20.
Taghipour
,
J.
, and
Dardel
,
M.
,
2015
, “
Steady State Dynamics and Robustness of a Harmonically Excited Essentially Nonlinear Oscillator Coupled With a Two-Dof Nonlinear Energy Sink
,”
Mech. Syst. Signal Process.
,
62–63
, pp.
164
182
.10.1016/j.ymssp.2015.03.018
21.
Yang
,
J.
,
Xiong
,
Y. P.
, and
Xing
,
J. T.
,
2014
, “
Nonlinear Power Flow Analysis of the Duffing Oscillator
,”
Mech. Syst. Signal Process.
,
45
(
2
), pp.
563
578
.10.1016/j.ymssp.2013.11.004
22.
Kremer
,
D.
, and
Liu
,
K.
,
2017
, “
A Nonlinear Energy Sink With an Energy Harvester: Harmonically Forced Responses
,”
J. Sound Vib.
,
410
, pp.
287
302
.10.1016/j.jsv.2017.08.042
23.
Hoang
,
T.
,
Duhamel
,
D.
,
Foret
,
G.
,
Yin
,
H. P.
, and
Argoul
,
P.
,
2017
, “
Frequency Dependent Iteration Method for Forced Nonlinear Oscillators
,”
Appl. Math. Modell.
,
42
, pp.
441
448
.10.1016/j.apm.2016.10.012
24.
Viguie
,
R.
, and
Kerschen
,
G.
,
2009
, “
Nonlinear Vibration Absorber Coupled to a Nonlinear Primary System: A Tuning Methodology
,”
J. Sound Vib.
,
326
(
3–5
), pp.
780
793
.10.1016/j.jsv.2009.05.023
25.
Vakakis
,
A. F.
, and
Blanchard
,
A.
,
2018
, “
Exact Steady States of the Periodically Forced and Damped Duffing Oscillator
,”
J. Sound Vib.
,
413
, pp.
57
65
.10.1016/j.jsv.2017.10.030
26.
Brennan
,
M. J.
, and
Gatti
,
G.
,
2012
, “
The Characteristics of a Nonlinear Vibration Neutralizer
,”
J. Sound Vib.
,
331
(
13
), pp.
3158
3171
.10.1016/j.jsv.2012.02.010
27.
Anh
,
N. D.
, and
Hieu
,
N. N.
,
2012
, “
The Duffing Oscillator Under Combined Periodic and Random Excitations
,”
Probab. Eng. Mech.
,
30
, pp.
27
36
.10.1016/j.probengmech.2012.02.004
28.
Hosen
,
M. A.
, and
Chowdhury
,
M. S. H.
,
2015
, “
A New Analytical Technique Based on Harmonic Balance Method to Determine Approximate Periods for Duffing-Harmonic Oscillator
,”
Alexan. Eng. J.
,
54
(
2
), pp.
233
239
.10.1016/j.aej.2015.03.009
29.
Neild
,
S.
,
2012
,
Exploiting Nonlinear Behaviour in Structural Dynamics
, Springer, New York, pp.
53
109
. 10.1007/978-3-7091-1187-1
30.
Alabuzhev
,
P. M.
,
1989
,
Vibration Protection and Measuring Systems With Quasi-Zero Stiffness
,
CRC Press
, New York.
31.
Platus
,
D. L.
,
1992
, “
Negative Stiffness Mechanism Vibration Isolation Systems
,”
Vibration Control in Microelectronics, Optics, and Metrology
, Vol.
1619
,
International Society for Optics and Photonics
, Bellingham, WA, pp.
44
55
.
32.
Carrella
,
A.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2007
, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
,
301
(
3–5
), pp.
678
689
.10.1016/j.jsv.2006.10.011
33.
Zhang
,
J. Z.
,
Li
,
D.
,
Chen
,
M. J.
, and
Dong
,
S.
,
2004
, “
An Ultra-Low Frequency Parallel Connection Nonlinear Isolator for Precision Instruments
,”
Key Engineering Materials
, Vol.
257
,
Trans Tech Publications
, Bäch, Switzerland, pp.
231
238
.10.4028/www.scientific.net/KEM.257-258.231
34.
Le
,
T. D.
, and
Ahn
,
K. K.
,
2011
, “
A Vibration Isolation System in Low Frequency Excitation Region Using Negative Stiffness Structure for Vehicle Seat
,”
J. Sound Vib.
,
330
(
26
), pp.
6311
6335
.10.1016/j.jsv.2011.07.039
35.
Ch Huang
,
X.
,
Liu
,
X. T.
, and
Hua
,
H. X.
,
2014
, “
Effects of Stiffness and Load Imperfection on the Isolation Performance of a High-Static-Low-Dynamic-Stiffness Non-Linear Isolator Under Base Displacement Excitation
,”
Int. J. Non-Linear Mech.
,
65
, pp.
32
43
.10.1016/j.ijnonlinmec.2014.04.011
36.
Huang
,
X.
,
Liu
,
X.
,
Sun
,
J.
,
Zhang
,
Z.
, and
Hua
,
H.
,
2014
, “
Effect of the System Imperfections on the Dynamic Response of a High-Static-Low-Dynamic Stiffness Vibration Isolator
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1157
1167
.10.1007/s11071-013-1199-7
37.
Abbasi
,
A.
,
Khadem
,
S. E.
,
Bab
,
S.
, and
Friswell
,
M. I.
,
2016
, “
Vibration Control of a Rotor Supported by Journal Bearings and an Asymmetric High Static Low Dynamic Stiffness Suspension
,”
Nonlinear Dyn.
,
85
(
1
), pp.
525
545
.10.1007/s11071-016-2704-6
38.
Santhosh
,
B.
,
2018
, “
Dynamics and Performance Evaluation of an Asymmetric Nonlinear Vibration Isolation Mechanism
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
(
4
), p.
169
.10.1007/s40430-018-1084-x
39.
Rao
,
S. S.
,
2015
,
Mechanical Vibration
, 4th ed.,
Wiley Interscience
,
New York
.
You do not currently have access to this content.