Abstract

A classical approach to the multibody systems (MBS) modeling is to use absolute coordinates, i.e., a set of (possibly redundant) coordinates that describe the absolute position and orientation of the individual bodies with respect to an inertial frame (IFR). A well-known problem for the time integration of the equations of motion (EOM) is the lack of a singularity-free parameterization of spatial motions, which is usually tackled by using unit quaternions. Lie group integration methods were proposed as an alternative approach to the singularity-free time integration. At the same time, Lie group formulations of EOM naturally respect the geometry of spatial motions during integration. Lie group integration methods, operating directly on the configuration space Lie group, are incompatible with standard formulations of the EOM, and cannot be implemented in existing MBS simulation codes without a major restructuring. The contribution of this paper is twofold: (1) A framework for interfacing Lie group integrators to standard EOM formulations is presented. It allows describing MBS in terms of various absolute coordinates and at the same using Lie group integration schemes. (2) A method for consistently incorporating the geometry of rigid body motions into the evaluation of EOM in absolute coordinates integrated with standard vector space integration schemes. The direct product group SO(3)×3 and the semidirect product group SE(3) are used for representing rigid body motions. The key element is the local-global transitions (LGT) transition map, which facilitates the update of (global) absolute coordinates in terms of the (local) coordinates on the Lie group. This LGT map is specific to the absolute coordinates, the local coordinates on the Lie group, and the Lie group used to represent rigid body configurations.

References

1.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
, 4th ed.,
Cambridge University Press
, Cambridge, UK.
2.
Arnold
,
M.
,
Brüls
,
O.
, and
Cardona
,
A.
,
2015
, “
Error Analysis of Generalized-α Lie Group Time Integration Methods for Constrained Mechanical Systems
,”
Numer. Math.
,
129
(
1
), pp.
149
179
.10.1007/s00211-014-0633-1
3.
Arnold
,
M.
, and
Hante
,
S.
,
2017
, “
Implementation Details of a Generalized-α Differential-Algebraic Equation Lie Group Method
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
2
), p. 021002.10.1115/1.4033441
4.
Brüls
,
O.
, and
Cardona
,
A.
,
2010
, “
On the Use of Lie Group Time Integrators in Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
3
), p. 031002.10.1115/1.4001370
5.
Brüls
,
O.
,
Cardona
,
A.
, and
Arnold
,
M.
,
2012
, “
Lie Group Generalized-Alpha Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
48
pp.
121
137
.10.1016/j.mechmachtheory.2011.07.017
6.
Celledoni
,
E.
, and
Owren
,
B.
,
2003
, “
Lie Group Methods for Rigid Body Dynamics and Time Integration on Manifolds
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
3–4
), pp.
421
438
.10.1016/S0045-7825(02)00520-0
7.
Terze
,
Z.
,
Zlatar
,
D.
, and
Mueller
,
A.
,
2012
, “
Lie-Group Integration Method for Constrained Multibody Systems in Stabilized DAE-Index-1 Form
,”
Multibody Syst. Dyn.
, pp.
275
305
.
8.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2016
, “
Singularity-Free Time Integration of Rotational Quaternions Using Non-Redundant Ordinary Differential Equations
,”
Multibody Syst. Dyn.
,
38
(
3
), pp.
201
225
.10.1007/s11044-016-9518-7
9.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2015
, “
Lie-Group Integration Method for Constrained Multibody Systems in State Space
,”
Multibody Syst. Dyn.
,
34
(
3
), pp.
275
305
.10.1007/s11044-014-9439-2
10.
Müller
,
A.
, and
Terze
,
Z.
,
2014
, “
The Significance of the Configuration Space Lie Group for the Constraint Satisfaction in Numerical Time Integration of Multibody Systems
,”
Mech. Mach. Theory
,
82
, pp.
173
202
.10.1016/j.mechmachtheory.2014.06.014
11.
Müller
,
A.
,
2016
, “
A Note on the Motion Representation and Configuration Update in Time Stepping Schemes for the Constrained Rigid Body
,”
BIT Numer. Math.
,
56
(
3
), pp.
995
1015
.10.1007/s10543-015-0580-y
12.
Müller
,
A.
,
2016
, “
Erratum to: A Note on the Motion Representation and Configuration Update in Time Stepping Schemes for the Constrained Rigid Body
,”
BIT Numer. Math.
,
56
(
3
), pp.
1017
1018
.10.1007/s10543-015-0591-8
13.
Sonneville
,
V.
,
Cardona
,
A.
, and
Brüls
,
O.
,
2014
, “
Geometrically Exact Beam Finite Element Formulated on the Special Euclidean Group SE(3)
,”
Comput. Methods Appl. Mech. Eng.
,
268
, pp.
451
474
.10.1016/j.cma.2013.10.008
14.
Borri
,
M.
,
Trainelli
,
L.
, and
Bottasso
,
C. L.
,
2000
, “
On Representations and Parameterizations of Motion
,”
Multibody Syst. Dyn.
,
4
(
2/3
), pp.
129
193
.10.1023/A:1009830626597
15.
Holzinger
,
S.
, and
Gerstmayr
,
J.
,
2021
, “
Time Integration of Rigid Bodies Modelled With Three Rotation Parameters
,”
Multibody Syst. Dyn.
, 53, pp.
1
34
.
16.
Nikravesh
,
P.
,
1988
,
Computer-Aided Analysis of Mechanical Systems
,
Prentice Hall
, Upper Saddle River, NJ.
17.
Blajer
,
W.
,
2001
, “
A Geometrical Interpretation and Uniform Matrix Formulation of Multibody System Dynamics
,”
ZAMM-J. Appl. Math. Mech.
,
81
(
4
), pp.
247
259
.10.1002/1521-4001(200104)81:4<247::AID-ZAMM247>3.0.CO;2-D
18.
Brauchli
,
H.
,
1991
, “
Mass-Orthogonal Formulation of Equations of Motion for Multibody Systems
,”
Z. Angew. Math. Phys. ZAMP
,
42
(
2
), pp.
169
182
.10.1007/BF00945791
19.
Terze
,
Z.
, and
Naudet
,
J.
,
2008
, “
Geometric Properties of Projective Constraint Violation Stabilization Method for Generally Constrained Multibody Systems on Manifolds
,”
Multibody Syst. Dyn.
,
20
(
1
), pp.
85
106
.10.1007/s11044-008-9107-5
20.
Barker
,
L.
,
Bowles
,
R.
, and
Williams
,
L.
,
1973
, “
Development and Application of a Local Linearization of Quaternion Rate Equations in Real-Time Flight Simulation Problems
,” NASA, Hampton, VA, Report No. TN D-7347.
21.
Nikravesh
,
P.
,
Wehage
,
E. R.
, and
Kwon
,
O.
,
1985
, “Euler Parameters in Computational Kinematics and Dynamics. Part 1,”
ASME J. Mech., Trans., and Automation.
, 107(3), pp.
358
365
.10.1115/1.3260722
22.
Shabana
,
A. A.
,
2014
, “
Euler Parameters Kinetic Singularity
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
228
(
3
), pp.
307
313
.10.1177/1464419314539301
23.
Möller
,
M.
, and
Glocker
,
C.
,
2012
, “
Rigid Body Dynamics With a Scalable Body, Quaternions and Perfect Constraints
,”
Multibody Syst. Dyn.
,
27
(
4
), pp.
437
454
.10.1007/s11044-011-9276-5
24.
Haghshenas-Jaryani
,
M.
, and
Bowling
,
A.
,
2013
, “
A New Switching Strategy for Addressing Euler Parameters in Dynamic Modeling and Simulation of Rigid Multibody Systems
,”
Multibody Syst. Dyn.
,
30
(
2
), pp.
185
197
.10.1007/s11044-012-9333-8
25.
Condurache
,
D.
,
2017
, “
Poisson-Darboux Problems's Extended in Dual Lie Algebra
,” Adv. Astronaut. Sci., 162, pp. 3345–3364
.
26.
Müller
,
A.
,
2021
, “
Review of Exponential and Cayley Map on SE(3) as Relevant for Lie Group Integration of the Generalized Poisson Equation and Flexible Multibody Systems
,”
Royal Soc. Proc. A
,
477
(
2253
), p. 20210303.10.1098/rspa.2021.0303
27.
Müller
,
A.
,
2018
, “
Screw and Lie Group Theory in Multibody Dynamics–Motion Representation and Recursive Kinematics of Tree-Topology Systems
,”
Multibody Syst. Dyn.
,
43
(
1
), pp.
37
70
.10.1007/s11044-017-9582-7
28.
Bottasso
,
C. L.
, and
Borri
,
M.
,
1998
, “
Integrating Finite Rotations
,”
Comput. Methods Appl. Mech. Eng.
,
164
(
3–4
), pp.
307
331
.10.1016/S0045-7825(98)00031-0
29.
Bottasso
,
C. L.
,
Borri
,
M.
, and
Trainelli
,
L.
,
2001
, “
Integration of Elastic Multibody Systems by Invariant Conserving/Dissipating Algorithms. II. Numerical Schemes and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
29–30
), pp.
3701
3733
.10.1016/S0045-7825(00)00285-1
30.
Iserles
,
A.
,
Munthe-Kaas
,
H. Z.
,
Nørsett
,
S. P.
, and
Zanna
,
A.
,
2000
, “
Lie-Group Methods
,”
Acta Numer.
,
9
, pp.
215
365
.10.1017/S0962492900002154
31.
Celledoni
,
E.
,
Çokaj
,
E.
,
Leone
,
A.
,
Murari
,
D.
, and
Owren
,
B.
,
2021
, “
Lie Group Integrators for Mechanical Systems
,” arXiv Preprint arXiv:2102.12778.
32.
Munthe-Kaas
,
H.
,
1998
, “
Runge-Kutta Methods on Lie Groups
,”
BIT Numer. Math.
,
38
(
1
), pp.
92
111
.10.1007/BF02510919
33.
Munthe-Kaas
,
H.
,
1999
, “
High Order Runge-Kutta Methods on Manifolds
,”
Appl. Numer. Math.
,
29
(
1
), pp.
115
127
.10.1016/S0168-9274(98)00030-0
34.
Wieloch
,
V.
, and
Arnold
,
M.
,
2021
, “
BDF Integrators for Constrained Mechanical Systems on Lie Groups
,”
J. Comput. Appl. Math.
,
387
, p.
112517
.10.1016/j.cam.2019.112517
35.
Newmark
,
N.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech. Div. ASCE
,
85
(
3
), pp.
67
94
.10.1061/JMCEA3.0000098
36.
Iserles
,
A.
,
1984
, “
Solving Linear Ordinary Differential Equations by Exponentials of Iterated Commutators
,”
Numer. Math.
,
45
(
2
), pp.
183
199
.10.1007/BF01389464
37.
Faltinsen
,
S.
,
Marthinsen
,
A.
, and
Munthe-Kaas
,
H. Z.
,
2001
, “
Multistep Methods Integrating Ordinary Differential Equations on Manifolds
,”
Appl. Numer. Math.
,
39
(
3–4
), pp.
349
365
.10.1016/S0168-9274(01)00103-9
38.
Crouch
,
P.
, and
Grossman
,
R.
,
1993
, “
Numerical Integration of Ordinary Differential Equations on Manifolds
,”
J. Nonlinear Sci
,
3
(
1
), pp.
1
33
.,10.1007/BF02429858
39.
Owren
,
B.
, and
Marthinsen
,
A.
,
2001
, “
Integration Methods Based on Canonical Coordinates of the Second Kind
,”
Numer. Math.
,
87
(
4
), pp.
763
790
.10.1007/PL00005432
40.
Murray
,
R.
,
Li
,
Z.
, and
Sastry
,
S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
, Boca Raton, FL.
41.
Selig
,
J. M.
,
2007
, “
Cayley Maps for SE(3)
,”
12th International Federation for the Promotion of Mechanism and Machine Science World Congress
, Besançon, France, June 17–21, p.
6
.
42.
Müller
,
A.
,
2016
, “
Coordinate Mappings for Rigid Body Motions
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
2
), p.
021010
.10.1115/1.4034730
43.
Bauchau
,
O. A.
, and
Choi
,
J.-Y.
,
2003
, “
The Vector Parameterization of Motion
,”
Nonlinear Dyn.
,
33
(
2
), pp.
165
188
.10.1023/A:1026008414065
44.
Bauchau
,
O. A.
,
2010
,
Flexible Multibody Dynamics
,
Springer Science & Business Media
, Dordrecht, The Netherlands.
45.
Schaub
,
H.
,
Tsiotras
,
P.
, and
Junkins
,
J. L.
,
1995
, “
Principal Rotation Representations of Proper N× N Orthogonal Matrices
,”
Int. J. Eng. Sci.
,
33
(
15
), pp.
2277
2295
.10.1016/0020-7225(95)00070-E
46.
Tsiotras
,
P.
,
Junkins
,
J. L.
, and
Schaub
,
H.
,
1997
, “
Higher-Order Cayley Transforms With Applications to Attitude Representations
,”
J. Guid. Control, Dyn.
,
20
(
3
), pp.
528
534
.10.2514/2.4072
47.
Milenkovic
,
V.
,
1982
, “
Coordinates Suitable for Angular Motion Synthesis in Robots
,”
Robots IV Conference Proceedings (SME)
, Society of Manufacturing Engineers, pp.
407
420
.
48.
Milenkovic
,
V.
, and
Milenkovic
,
P.
,
2000
, “
Unit Quaternion and CRV: Complementary Non-Singular Representations of Rigid-Body Orientation
,”
Advances in Robot Kinematics
,
Springer
, Dordrecht, The Netherlands, pp.
27
34
.
49.
Condurache
,
D.
, and
Ciureanu
,
I.-A.
,
2020
, “
Baker–Campbell–Hausdorff–Dynkin Formula for the Lie Algebra of Rigid Body Displacements
,”
Mathematics
,
8
(
7
), p.
1185
.10.3390/math8071185
50.
Engø
,
K.
,
2001
, “
On the BCH-Formula in so (3)
,”
BIT Numer. Math.
,
41
(
3
), pp.
629
632
.10.1023/A:1021979515229
You do not currently have access to this content.