Lyapunov stability of linear noncommensurate order fractional systems is treated in this paper. The proposed methodology is based on the concept of fractional energy stored in inductor and capacitor components, where natural decrease of the stored energy is caused by internal Joule losses. The Lyapunov function is expressed as the sum of the different reversible fractional energies, whereas its derivative is interpreted in terms of internal and external Joule losses. Stability conditions are derived from the energy balance principle, adapted to the fractional case. Examples are taken from electrical systems, but this methodology applies also directly to mechanical and electromechanical systems.

References

1.
Khalil
,
H. K.
,
1996
,
Non Linear Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
2.
Aguila-Camacho
,
N.
,
Duarte-Mermoud
,
M. A.
, and
Gallegos
,
J. A.
,
2014
, “
Lyapunov Functions for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
9
), pp.
2951
2957
.
3.
Baleanu
,
D.
,
Ranjbar
,
N. A.
,
Sadati
,
R. S. J.
,
Delavari
,
H.
,
Abdeljawad
,
T.
, and
Gejji
,
V.
,
2011
, “
Lyapunov–Krasovskii Stability Theorem for Fractional Systems With Delay
,”
Rom. J. Phys.
,
56
(
5–6
), pp.
636
643
.
4.
Chen
,
D.
,
Zhang
,
R.
,
Lin
,
X.
, and
Ma
,
X.
,
2014
, “
Fractional Order Lyapunov Stability Theorem and Its Application in Synchronization of Complex Dynamical Networks
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
12
), pp.
4105
4121
.
5.
Hu
,
J. B.
,
Lu
,
G. P.
,
Zhang
,
S. H.
, and
Zhao
,
L. D.
,
2015
, “
Lyapunov Stability Theorem About Fractional System Without and With Delay
,”
Commun. Nonlinear Sci. Numer. Simul.
,
20
(
3
), pp.
905
913
.
6.
Li
,
Y.
, and
Chen
,
Y. Q.
,
2014
, “
Lyapunov Stability of Fractional Order Non Linear Systems: A Distributed Order Approach
,”
ICFDA’14
, Catania, June 23–25.
7.
Momani
,
S.
, and
Hadid
,
S.
,
2004
, “
Lyapunov Stability Solutions of Fractional Integrodifferential Equations
,”
Int. J. Math. Math. Sci.
,
47
, pp.
2503
2507
.
8.
Jarad
,
F.
,
Abdeljawad
,
T.
,
Gudogdu
,
D.
, and
Baleanu
,
D.
,
2011
, “
On the Mittag-Leffler Stability of Q-Fractional Nonlinear Dynamical Systems
,”
Proc. Rom. Acad., Ser. A
,
12
(
4
), pp.
309
314
.
9.
Li
,
Y.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2009
, “
Mittag Leffler Stability of Fractional Order Non Linear Dynamic Systems
,”
Automatica
,
45
(
8
), pp.
1965
1969
.
10.
Sadati
,
S. J.
,
Baleanu
,
D.
,
Ranjbar
,
A.
,
Ghaderi
,
R.
, and
Abdeljawad
,
T.
,
2010
, “
Mittag-Leffler Stability Theorem for Fractional Nonlinear Systems With Delay
,”
Abstr. Appl. Anal.
,
2010
, p.
108651
.
11.
Sabatier
,
J.
,
Moze
,
M.
, and
Farges
,
C.
,
2010
, “
LMI Stability Conditions for Fractional Order Systems
,”
Comput. Math. Appl.
,
9
, pp.
1594
1609
.
12.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2011
, “
A Lyapunov Approach to the Stability of Fractional Differential Equations
,”
Signal Process.
,
91
(
3
), pp.
437
445
.
13.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2013
, “
Lyapunov Stability of Linear Fractional Systems. Part 1: Definition of Fractional Energy and Part 2: Derivation of a Stability Condition
,”
ASME
Paper No. DETC2013-12824.
14.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2014
, “
Lyapunov Stability of Fractional Order Systems: The Two Derivatives Case
,”
ICFDA’14
, Catania, June 23–25.
15.
Yuan
,
J.
,
Shi
,
B.
, and
Ji
,
W.
,
2013
, “
Adaptive Sliding Mode Control of a Novel Class of Fractional Chaotic Systems
,”
Adv. Math. Phys.
,
2013
, p.
576709
.
16.
Hartley
,
T. T.
,
Trigeassou
,
J. C.
,
Lorenzo
,
C. F.
, and
Maamri
,
N.
,
2015
, “
Energy Storage and Loss in Fractional Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061006
.
17.
Ortega
,
R.
,
Loria
,
A.
,
Nicklasson
,
P. J.
, and
Sira-Ramirez
,
H.
,
1998
,
Passivity Based Control of Euler Lagrange Systems
,
Springer-Verlag
,
Berlin, Germany
.
18.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
New York
.
19.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
20.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
State Variables and Transients of Fractional Order Differential Systems
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3117
3140
.
21.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2013
, “
The Infinite State Approach: Origin and Necessity
,”
Comput. Math. Appl.
,
66
(
5
), pp.
892
907
.
22.
Montseny
,
G.
,
1998
, “
Diffusive Representation of Pseudo Differential Time Operators
,”
Proc. ESSAIM
,
5
, pp.
159
175
.
23.
Maamri
,
N.
,
Tari
,
M.
, and
Trigeassou
,
J. C.
,
2014
, “
Physical Interpretation and Initialization of the Fractional Integrator
,”
ICFDA’14
, Catania, June 23–25.
24.
Retiere
,
N.
, and
Ivanes
,
M.
,
1998
, “
Modeling of Electrical Machines by Implicit Derivative Half Order Systems
,”
IEEE Power Eng. Rev.
,
18
(
9
), pp.
62
64
.
25.
Matignon
,
D.
,
1998
, “
Stability Properties for Generalized Fractional Differential Systems
,”
Proc. ESSAIM
,
5
, pp.
145
158
.
26.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2015
, “
Lyapunov Stability of Commensurate Fractional Order Systems: A Physical Interpretation
,”
ASME J. Comput. Nonlinear Dyn.
(submitted).
You do not currently have access to this content.