The objective of this investigation is to develop a low order continuum-based liquid sloshing model that can be successfully integrated with multibody system (MBS) algorithms. The liquid sloshing model proposed in this investigation allows for capturing the effect of the distributed inertia and viscosity of the fluid. The fluid viscous forces are defined using the Navier–Stokes equations. In order to demonstrate the use of the approach presented in this study, the assumption of an incompressible Newtonian fluid is considered with a total Lagrangian approach. Fluid properties such as the incompressibility condition are formulated using a penalty method. The low order model that captures the effect of the distributed fluid inertia on the vehicle dynamics is developed in this investigation using the floating frame reference (FFR) formulation. The use of this approach allows for developing an inertia-variant fluid model that accounts for the dynamic coupling between different modes of the fluid displacements. The matrix of position vector gradients and its derivative are formulated using the FFR kinematic description. The position and velocity gradient tensors are used to define the Navier–Stokes stress forces. The proposed liquid sloshing model is integrated with a MBS railroad vehicle model in which the rail/wheel interaction is formulated using a 3D elastic contact formulation that allows for the wheel/rail separation. Several simulation scenarios are used to examine the effect of the distributed liquid inertia on the motion of the railroad vehicle. The results, obtained using the sloshing model, are compared with the results obtained using a rigid body vehicle model. The comparative numerical study presented in this investigation shows that the effect of the sloshing tends to increase the possibility of wheel/rail separation as the forward velocity increases, thereby increasing the possibility of derailments at these relatively high speeds.

References

1.
Dodge
,
F. T.
, and
Kana
,
D. D.
,
1966
, “
Moment of Inertia and Damping of Liquid in Baffled Cylindrical Tanks
,”
J. Spacecr. Rockets
,
3
(
1
), pp.
153
155
.10.2514/3.28408
2.
Kana
,
D. D.
,
1987
, “
A Model for Nonlinear Rotary Slosh in Propellant Tanks
,”
J. Spacecr. Rockets
,
24
(
3,4
), pp.
169
177
.10.2514/3.25891
3.
Kana
,
D. D.
,
1989
, “
Validated Spherical Pendulum Model for Rotary Liquid Slosh
,”
J. Spacecr. Rockets
,
26
(
3
), pp.
188
195
.10.2514/3.26052
4.
McIvor
,
P.
,
1989
, “
Sloshing Frequencies for Cylindrical and Spherical Containers Filled to an Arbitrary Depth
,”
J. Fluid Mech.
,
201
, pp.
243
257
.10.1017/S0022112089000923
5.
Pinson
,
L. D.
,
1964
, “
Longitudinal Spring Constants for Liquid Propellant Tanks With Ellipsoidal Tanks
,” Report No. NASA TN D-2220.
6.
Sumner
,
I. E.
,
1965
, “
Experimentally Determined Pendulum Analogy of Liquid Sloshing in Spherical and Oblate-Spherical Tanks
,” Report No. NASA TN D-2737.
7.
Tritton
,
D.
,
1986
, “
Chaos in the Swing of a Pendulum
,”
New Sci.
,
24
, pp.
37
40
.
8.
Unruh
,
J. F.
,
Kana
,
D. D.
,
Dodge
,
F. T.
, and
Fey
,
T. A.
,
1986
, “
Digital Data Analysis Techniques for Extraction of Slosh Model Parameters
,”
J. Spacecr. Rockets
,
23
(
3,4
), pp.
171
177
.10.2514/3.25096
9.
Werner
,
P. W.
, and
Coldwell
,
J. T.
,
1961
, “
Experimental Evaluation of Analytical Models for the Inertias and Natural Frequencies of Fuel Sloshing in a Circular Cylindrical Tanks
,” Report No. NASA TN D-865.
10.
Bauer
,
H. F.
,
1960
, “
Mechanical Model for the Description of the Liquid Motion in a Rectangular Container
,” Lockheed-Co., Report No. RN ER-8559.
11.
Iwnicki
,
S.
,
2006
,
Handbook of Railway Vehicle Dynamics
,
CRC Press
, Boca Raton, FL.
12.
Shabana
,
A. A.
,
Zaazaa
,
K. E.
, and
Sugiyama
,
H.
,
2008
,
Railroad Vehicle Dynamics: A Computational Approach
,
Taylor & Francis/CRC
, Boca Raton, FL.
13.
14.
U.S. Department of Transportation
,
2012
, “
National Transportation Statistics, Research and Innovative Technology Administration
,” Bureau of Transportation Statistics, p.
125
.
15.
Ibrahim
,
R. A.
,
Pilipchuk
,
V. N.
, and
Ikeda
,
T.
,
2001
, “
Recent Advances in Liquid Sloshing Dynamics
,”
ASME Appl. Mech. Rev.
,
54
(
2
), pp.
133
199
.10.1115/1.3097293
16.
Ibrahim
,
R. A.
,
2005
,
Liquid Sloshing Dynamics: Theory and Applications
,
Cambridge University
, Cambridge, UK.
17.
Rebouillat
,
S.
, and
Liksonov
,
D.
,
2010
, “
Fluid-Structure Interaction in Partially Filled Liquid Containers: A Comparative Review of Numerical Approaches
,”
Comput. Fluids
,
39
(
5
), pp.
739
746
.10.1016/j.compfluid.2009.12.010
18.
Gialleonardo
,
E. D.
,
Premoli
,
A.
,
Gallazzi
,
S.
, and
Bruni
,
S.
,
2013
, “
Sloshing Effects and Running Safety in Railway Freight Vehicles
,”
Veh. Syst. Dyn.
,
51
(
10
), pp.
1640
1654
.10.1080/00423114.2013.814797
19.
Graham
,
E. W.
,
1951
, “
The Forces Produced by Fuel Oscillations in a Rectangular Tank
,” Douglas Aircraft Cooperation, Report No. SM-13748.
20.
Graham
,
E. W.
, and
Rodríguez
,
A. M.
,
1952
, “
The Characteristics of Fuel Motion Which Affect Airplane Dynamics
,”
ASME J. Appl. Mech.
,
74
, pp.
381
388
.
21.
Abramson
,
H. N.
,
1966
, “
The Dynamic Behaviour of Liquids in Moving Containers
,” Report No. NASA SP-106.
22.
Zheng
,
X.
,
Li
,
X.
, and
Ren
,
Y.
,
2012
, “
Equivalent Mechanical Model for Lateral Liquid Sloshing in Partially Filled Tank Vehicles
,”
Math. Probl. Eng.
, p.
162825
.
23.
Ranganathan
,
R.
,
Rakheja
,
S.
, and
Sankar
,
S.
,
1989
, “
Steady Turning Stability of Partially Filled Tank Vehicles With Arbitrary Tank Geometry
,”
ASME J. Dyn. Syst., Meas. Control
,
111
(
3
), pp.
481
489
.10.1115/1.3153078
24.
Aliabadi
,
S.
,
Johnson
,
A.
, and
Abedi
,
J.
,
2003
, “
Comparison of Finite Element and Pendulum Models for Simulation of Sloshing
,”
Comput. Fluids
,
32
(
4
), pp.
535
545
.10.1016/S0045-7930(02)00006-3
25.
Reddy
,
J. N.
, and
Gartling
,
D. K.
,
2010
,
The Finite Element Method in Heat Transfer and Fluid Dynamics
,
Taylor & Francis/CRC
, Boca Raton, FL.
26.
Celebi
,
M. S.
, and
Akyildiz
,
H.
,
2001
, “
Nonlinear Modeling of Liquid Sloshing in a Moving Rectangular Tank
,”
Ocean Eng.
,
29
(12), pp.
1527
1553
.10.1016/S0029-8018(01)00085-3
27.
Shabana
,
A. A.
,
2014
,
Dynamics of Multibody Systems
, 4th ed.,
Cambridge University
,
New York
.
28.
Spencer
,
A. J. M.
,
1980
,
Continuum Mechanics
,
Longman
,
London, UK
.
29.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University
,
Cambridge, UK
.
30.
Shabana
,
A. A.
,
2012
,
Computational Continuum Mechanics
, 2nd ed.,
Cambridge University
, Cambridge, UK.
You do not currently have access to this content.