A review of the current state of the absolute nodal coordinate formulation (ANCF) is proposed for large-displacement and large-deformation problems in flexible multibody dynamics. The review covers most of the known implementations of different kinds of finite elements including thin and thick planar and spatial beams and plates, their geometrical description inherited from FEM, and formulations of the most important elements of equations of motion. Much attention is also paid to simulation examples that show reasonableness and accuracy of the formulations applied to real physical problems and that are compared with experiments having significant geometrical nonlinearity. Current and further development directions of the ANCF are also briefly outlined.

1.
Shabana
,
A. A.
, 1997, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
1384-5640,
1
, pp.
189
222
.
2.
Song
,
J. O.
, and
Haug
,
E. J.
, 1980, “
Dynamic Analysis of Planar Flexible Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
24
, pp.
359
381
.
3.
Shabana
,
A. A.
, and
Wehage
,
R. A.
, 1983, “
Coordinate Reduction Technique for Transient Analysis of Special Substructureswith Large Angular Rotations
,”
J. Struct. Mech.
0360-1218,
11
(
3
), pp.
401
431
.
4.
Belytschko
,
T.
, and
Hsieh
,
B. J.
, 1973, “
Nonlinear Transient Finite Element Analysis with Convected Coordinates
,”
Int. J. Numer. Methods Eng.
0029-5981,
7
, pp.
255
271
.
5.
Rankin
,
C. C.
, and
Brogan
,
F. A.
, 1986, “
An element Independent Corotational Procedure for the Treatment of Large Rotations
,”
ASME J. Pressure Vessel Technol.
0094-9930,
108
, pp.
165
174
.
6.
Simo
,
J. C.
, 1985, “
A Finite Strain Beam Formulation. The Three-Dimensional Dynamic Problem, Part I
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
49
, pp.
55
70
.
7.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
, 1986, “
A Three-Dimensional Finite Strain Rod Model, Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
58
, pp.
79
116
.
8.
Shabana
,
A. A.
, 1996, “
An Absolute Nodal Coordinate Formulation for the Large Rotation and Large Deformation Analysis of Flexible Bodies
,” Techn. Rep. No. MBS96–1-UIC,
Univ. of Illinois at Chicago
, Chicago IL.
9.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 1991,
The Finite Element Method, Volume 2: Solid and Fluid Mechanics
, 4th edition,
McGraw-Hill Book Company
.
10.
Berzeri
,
M.
, and
Shabana
,
A. A.
, 2000, “
Development of Simple Models for the Elastic Forces in the Absolute Nodal Co-ordinate Formulation
,”
J. Sound Vib.
0022-460X,
235
(
4
), pp.
539
565
.
11.
Shabana
,
A. A.
,
Hussien
,
H. A.
, and
Escalona
,
J. L.
, 1997, “
Absolute Nodal Coordinate Formulation
,”
Proceedings of the 16th ASME Biennial Conference on Mechanical Vibration and Noice
,
ASME
, New York.
12.
Takahashi
,
Y.
, and
Shimizu
,
N.
, 1999, “
Study on Elastic Forces of the Absolute Nodal Coordinate Formulation for Deformable Beams
,”
ASME Proceedings of Design Engineering Technical Conference
, VIB–8203,
ASME
, New York.
13.
Campanelli
,
M.
,
Berzeri
,
M.
, and
Shabana
,
A. A.
, 2000, “
Performance of the Incremental and Non-Incremental Finite Element Formulations in Flexible Multibody Problems
,”
J. Mech. Des.
1050-0472,
122
, p.
498
.
14.
Yoo
,
W.-S.
,
Lee
,
J.-H.
,
Park
,
S.-J.
,
Sohn
,
J.-H.
,
Dmitrochenko
,
O. N.
, and
Pogorelov
,
D. Yu.
,2003, “
Large Oscillations of a Thin Cantilever Beam: Physical Experiments and Simulation using Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
0924-090X,
34
(
1
), pp.
3
29
.
15.
Shabana
,
A. A.
, 1998,
Dynamics of Multibody Systems
, 2nd edition,
Cambridge University Press
, New York.
16.
Dmitrochenko
,
O.
, 2002, “
Methods of Dynamical Simulation of Hybrid Systems with Accounting Geometrical Non-Linearity
,”
Dynamics, Strength and Reliability of Transport Machines
,
BSTU
, Bryansk, pp.
24
34
(in Russian).
17.
Dmitrotchenko
,
O. N.
, 2002, “
Efficient Simulation of Rigid-Flexible Multibody Dynamics: Some Implementations and Results
,”
Proc. of NATO ASI on Virtual Nonlinear Multibody Systems 1
, Prague, pp.
51
56
.
18.
Dmitrochenko
,
O. N.
, and
Pogorelov
,
D. Yu.
, 2003, “
Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
1384-5640,
10
(
1
), pp.
17
43
.
19.
Yoo
,
W.-S.
,
Lee
,
J.-H.
,
Park
,
S.-J.
,
Sohn
,
J.-H.
,
Pogorelov
,
D. Yu.
, and
Dmitrochenko
,
O. N.
, 2004, “
Large Deflection Analysis of a Thin Plate: Computer Simulations and Experiments
,”
Multibody Syst. Dyn.
1384-5640,
11
(
2
), pp.
185
208
.
20.
Yoo
,
Wan-Suk
,
Dmitrochenko
,
O.
,
Park
,
S. J.
, and
Lim
,
O. K.
, 2005, “
A New Thin Spatial Beam Element Using the Absolute Nodal Coordinates: Application to a Rotating Strip
,”
Mech. Based Des. Struct. Mach.
1539-7734, submitted.
21.
Omar
,
M. A.
, and
Shabana
,
A. A.
, 2001, “
A Two-Dimensional Shear Deformation Beam for Large Rotation and Deformation
,”
J. Sound Vib.
0022-460X,
243
(
3
), pp.
565
576
.
22.
García-Vallejo
,
D.
,
Mayo
,
J.
,
Escalona
,
J. L.
, and
Domínguez
,
J.
, 2004, “
Efficient Evaluation of the Elastic Forces and the Jacobian in the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
0924-090X,
35
, pp.
313
329
.
23.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
, 2004, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
1050-0472,
123
, pp.
606
621
.
24.
Mikkola
,
A. M.
, and
Shabana
,
A. A.
, 2001, “
A New Plate Element based on the Absolute Nodal Coordinate Formulation
,”
Proc. of ASME 2001 DETC
,
ASME
, New York.
25.
Hakala
,
M.
, 1986,
Finite Element Methods in Structural Mechanics
,
Otapaino
, Espoo (in Finnish).
26.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
, 2003, “
Studies on the Stiffness Properties of the Absolute Nodal Coordinate Formulation for Three-Dimensional Beams
,”
Abstracts of ASME DETC
, DETC2003/VIB–48325,
ASME
, New York, p.
594
.
27.
Dufva
,
K.
, and
Shabana
,
A. A.
, 2005, “
Use of the Absolute Nodal Coordinate Formulation in the Analysis of Thin Plate Structures
,” Techn. Rep. No. MBS05–1-UIC,
Univ. of Illinois at Chicago
, Chicago IL.
28.
Timoshenko
,
S. P.
, and
Woinowsky-Krieger
,
S.
, 1991,
Theory of Plates and Shells
, 2nd edition,
McGraw-Hill Book Company
.
29.
Pogorelov
,
D.
, 1997, “
Some Developments in Computational Techniques in Modeling Advanced Mechanical Systems
,”
Proceedings of IUTAM Symposium on Interaction between Dynamics and Control in Advanced Mechanical Systems
,
D. H.
van Campen
, ed.,
Kluwer Academic Publishers
, Dordrecht, pp.
313
320
.
30.
Yoo
,
Wan-Suk
,
Park
,
Su-Jin
,
Park
,
Jun-Yong
, and
Sohn
,
Jeong-Hyun
, 2004, “
Experiments and Computer Simulations of a Stepped Cantilever Beam with a Hybrid Coordinate Formulation
,”
Mech. Based Des. Struct. Mach.
1539-7734,
32
(
4
), pp.
515
532
.
31.
Yoo
,
Wan-Suk
, and
Sohn
,
J. H.
, 2005, “
Large Deformation of Beam with base Motions: Flexible Multibody Simulations and Experiments
,”
Comput. Methods Appl. Mech. Eng.
0045-7825, in press.
32.
von Dombrowski
,
S.
, 2002, “
Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates
,”
Multibody Syst. Dyn.
1384-5640,
8
, pp.
409
432
.
33.
Craig
,
R. R.
,
Structural Dynamics
.
34.
Dmitrochenko
,
O.
,
Yoo
,
Wan-Suk
, and
Pogorelov
,
D.
, 2003, “
Helicoseir as Shape of a Rotating Chain (II): 3D Theory and Simulation Using ANCF
,”
Multibody Syst. Dyn.
1384-5640, submitted.
35.
Gerstmayr
,
J.
, 2003, “
Strain Tensors in the Absolute Nodal Coordinate and the Floating Frame of Reference Formulation
,”
Nonlinear Dyn.
0924-090X,
34
, pp.
133
145
.
36.
Silverman
,
M. P.
,
Strange
,
Wayne
, and
Lipscombe
,
T. C.
, 1998, “‘
String Theory’: Equilibrium Configurations of a Helicoseir
,”
Eur. J. Phys.
0143-0807,
19
, pp.
379
387
.
37.
Dmitrochenko
,
O.
,
Yoo
,
Wan-Suk
, and
Pogorelov
,
D.
, 2004, “
Helicoseir as Shape of a Rotating Chain (I): 2D Theory and Simulation Using ANCF
,”
Multibody Syst. Dyn.
1384-5640, submitted.
38.
Kübler
,
L.
,
Eberhard
,
P.
, and
Geisler
,
J.
, 2003, “
Flexible Multibody Systems with Large Deformations Using Absolute Nodal Coordinates for Isoparametric Solid Brick Elements
,”
Abstracts of ASME DETC
, DETC2003/VIB–48303,
ASME
, New York, p.
573
.
39.
Takahashi
,
Y.
,
Shimizu
,
N.
, and
Suzuki
,
K.
, 2002, “
Introduction of Damping Matrix Into Absolute Nodal Coordinate Formulation
,”
Proceedings of the 1st Asian Conference on Multibody Dynamics
, pp.
33
40
.
40.
Bathe
,
K.-J.
, 1996,
Finite Element Procedures
,
Prentice Hall
, New Jersey.
41.
Kübler
,
L.
,
Eberhard
,
P.
, and
Geisler
,
J.
, 2003, “
Flexible Multibody Systems with Large Deformations and Nonlinear Structural Damping Using Absolute Nodal Coordinates
,”
Nonlinear Dyn.
0924-090X,
34
, pp.
31
52
.
42.
García-Vallejo
,
D.
,
Valverde
,
J.
, and
Domínguez
,
J.
, 2005, “
An Internal Damping Model for the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
0924-090X, in press.
43.
Sugiyama
,
H.
, and
Shabana
,
A. A.
, 2003, “
Use of Plasticity Theory in Flexible Multibody System Dynamics
,”
Abstr. of ASME DETC
, DETC2003/VIB–48326,
ASME
, New York, p.
595
.
44.
Gerstmayr
,
J.
, 2004, “
The Absolute Coordinate Formulation with Elasto-Plastic Deformations
,”
Multibody Syst. Dyn.
1384-5640,
12
, pp.
363
383
.
45.
Sugiyama
,
H.
,
Escalona
,
J. L.
, and
Shabana
,
A. A.
, 2003, “
Spatial Joint Constraints in Flexible Multibody Systems Using the Absolue Nodal Coordinate Formulation
,”
Abstr. of ASME DETC
, DETC2003/VIB–48354,
ASME
, New York, p.
621
.
46.
Gear
,
C. W.
,
Gupta
,
G. K.
, and
Leimkuhler
,
B.
, 1985, “
Automatic Integration of Euler-Lagrange Equations With Constraints
,”
J. Comput. Appl. Math.
0377-0427,
12
(
13
), pp.
77
90
.
47.
Neukirch
,
S.
,
van der Heijden
,
G. H. M.
, and
Thompson
,
J. M. T.
, 2002, “
Writhing Instabilities of Twisted Rods: From Infinite to Finite Length
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
1175
1191
.
48.
Palii
,
O. M.
, (ed.), 1982,
Handbook on Ship Structural Mechanics
,
2
,
Shipbuilding Publishers
, Leningrad, 1982 (In Russian).
49.
Pogorelov
,
D.
, 1998, “
Differential-Algebraic Equations in Multibody System Modeling
,”
Numer. Algorithms
1017-1398,
19
, pp.
183
194
.
50.
Schiehlen
,
W.
, (ed.), 1990,
Multibody Systems Handbook
,
Springer Verlag
, Berlin.
51.
Schiehlen
,
W.
, 1997, “
Multibody System Dynamics: Roots and Perspectives
,”
Multibody Syst. Dyn.
1384-5640,
1
, pp.
149
188
.
52.
Schwertassek
,
R.
, 1997, “
Flexible Bodies in Multibody Systems
,”
Computational Methods in Mechanical Systems
,
161
, pp.
329
363
.
53.
Shabana
,
A. A.
, and
Christensen
,
A. P.
, 1997, “
Three-Dimensional Absolute Nodal Coordinate Formulation: Plate Problem
,”
Int. J. Numer. Methods Eng.
0029-5981,
40
, pp.
2775
2790
.
You do not currently have access to this content.