The Hamiltonian dynamics of a resonantly excited linear spring-mass-damper system coupled to an array of pendulums is investigated in this study under 1:1:1:…:2 internal resonance between the pendulums and the linear oscillator. To study the small-amplitude global dynamics, a Hamiltonian formulation is introduced using generalized coordinates and momenta, and action-angle coordinates. The Hamilton’s equations are averaged to obtain equations for the first-order approximations to free and forced response of the system. Equilibrium solutions of the averaged Hamilton’s equations in action-angle or comoving variables are determined and studied for their stability characteristics. The system with one pendulum is known to be integrable in the absence of damping and external excitation. Exciting the system with even a small harmonic forcing near a saddle point leads to stochastic response, as clearly demonstrated by the Poincaré sections of motion. Poincaré sections are also computed for motions started with initial conditions near center-center, center-saddle and saddle-saddle-type equilibria for systems with two, three and four pendulums. In case of the system with more than one pendulum, even the free undamped dynamics exhibits irregular exchange of energy between the pendulums and the block. The increase in complexity is also demonstrated as the number of pendulums is increased, and when external excitation is present.

1.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley Interscience
, New York.
2.
Holmes
,
P.
, 1986, “
Chaotic Motions in a Weakly Nonlinear Model for Surface Waves
,”
J. Fluid Mech.
0022-1120,
162
, pp.
365
388
.
3.
McRobie
,
F. A.
,
Popov
,
A. A.
, and
Thompson
,
J. M. T.
, 1999, “
Auto-parametric Resonance in Cylindrical Shells Using Geometric Averaging
,”
J. Sound Vib.
0022-460X,
227
(
1
), pp.
65
84
.
4.
Popov
,
A. A.
,
Thompson
,
J. M. T.
, and
McRobie
,
F. A.
, 2001, “
Chaotic Energy Exchange Through Auto-Parametric Resonance in Cylindrical Shells
,”
J. Sound Vib.
0022-460X,
248
(
3
), pp.
395
411
.
5.
Popov
,
A. A.
, 2004, “
Autoparametric Resonance in Thin Cylinderical Shells Using the Slow Fluctuation Method
,”
Thin-Walled Struct.
0263-8231,
42
(
3
), pp.
475
495
.
6.
Haxton
,
R. S.
, and
Barr
,
A. D. S.
, 1972, “
The Autoparametric Vibration Absorber
,”
ASME J. Eng. Ind.
0022-0817,
94
, pp.
119
225
.
7.
Ikeda
,
T.
, 2003, “
Nonlinear Parametric Vibrations of an Elastic Structure With a Rectangular Liquid Tank
,”
Nonlinear Dyn.
0924-090X,
33
, pp.
43
70
.
8.
Tondl
,
A.
,
Ruijgrok
,
T.
,
Verhulst
,
F.
, and
Nabergoj
,
R.
, 2000,
Autoparametric Resonance in Mechanical Systems
,
Cambridge University Press
, New York.
9.
Wang
,
F.
,
Bajaj
,
A. K.
, and
Kamiya
,
K.
, 2005, “
Nonlinear Normal Modes and Their Bifurcations for an Inertially Coupled Nonlinear Conservative System
,”
Nonlinear Dyn.
0924-090X (to appear).
10.
Bajaj
,
A. K.
,
Chang
,
S. I.
, and
Johnson
,
J. M.
, 1994, “
Amplitude Modulated Dynamics of a Resonantly Excited Autoparametric Two Degree-of-Freedom System
,”
Nonlinear Dyn.
0924-090X,
5
, pp.
433
457
.
11.
Vyas
,
A.
, and
Bajaj
,
A. K.
, 2001, “
Dynamics of Autoparametric Vibration Absorbers Using Multiple Pendulums
,”
J. Sound Vib.
0022-460X,
246
, pp.
115
135
.
12.
Vyas
,
A.
,
Bajaj
,
A. K.
, and
Raman
,
A.
, 2004, “
Dynamics of Flexible Structures With Wideband Autoparametric Vibration Absorbers: Theory
,”
Proc. R. Soc. London, Ser. A
1364-5021,
460
, pp.
1547
1581
.
13.
Vyas
,
A.
,
Bajaj
,
A. K.
, and
Raman
,
A.
, 2004, “
Dynamics of Flexible Structures With Wideband Autoparametric Vibration Absorbers: Experiment
,”
Proc. R. Soc. London, Ser. A
1364-5021,
460
, pp.
1857
1880
.
14.
Wiggins
,
S.
, 1990,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
,
Springer Verlag
, New York.
15.
Banerjee
,
B.
, and
Bajaj
,
A. K.
, 1997, “
Amplitude Modulated Chaos in Two Degree-of-Freedom Systems With Quadratic Nonlinearities
,”
Acta Mech.
0001-5970,
124
, pp.
131
154
.
16.
Tien
,
W.
,
Namachchivaya
,
N. S.
, and
Bajaj
,
A. K.
, 1994, “
Nonlinear Dynamics of a Shallow Arch Under Periodic Excitation. Part I: 1:2 Internal Resonance
,”
Int. J. Non-Linear Mech.
0020-7462,
29
, pp.
349
366
.
17.
Wiggins
,
S.
, 1988,
Global Bifurcations and Chaos
,
Springer Verlag
, New York.
18.
Goldstein
,
H.
, 1980,
Classical Mechanics
,
Addison-Wesley
, Reading, Ma.
19.
Tabor
,
M.
, 1990,
Chaos and Integrability in Nonlinear Dynamics
,
Wiley
, New York.
20.
Verhulst
,
F.
, 1983, “
Asymptotic Analysis of Hamiltonian Systems
,”
Asymptotic Analysis II: Surveys and New Trends
,
F.
Verhulst
, ed.,
Springer-Verlag
, New York,
Lecture Notes in Mathematics
, Vol.
985
, pp.
137
186
.
21.
Van der Aa
,
E.
, and
Sanders
,
J. A.
, 1979. “
The 1:2:1-Resonance, Its Periodic Orbits and Integrals
”. In
Asymptotic Analysis from Theory to Applications
,
F.
Verhulst
, ed.,
Springer-Verlag
,
Lecture Notes in Mathematics
, Vol.
711
, pp.
187
208
.
22.
Van der Aa
,
E.
, 1983, “
First Order Resonances in Three-Degrees-of-Freedom systems
,”
Celest. Mech.
0008-8714,
31
, pp.
163
191
.
23.
Wang
,
L.
,
Bosley
,
D. L.
, and
Kevorkian
,
J.
, 1995, “
Asymptotic Analysis of a Class of Three-Degree-of-Freedom Hamiltonian Systems Near Stable equilibria
,”
Physica D
0167-2789,
88
, pp.
87
115
.
24.
Haller
,
G.
, and
Wiggins
,
S.
, 1996, “
Geometry and Chaos Near Resonant Equilibria of 3-DOF Hamiltonian Systems
,”
Physica D
0167-2789,
90
, pp.
319
365
.
25.
Litvak-Hinenzon
,
A.
, and
Rom-Kedar
,
V.
, 2002, “
Resonant Tori and Instabilities in Hamiltonian Systems
,”
Nonlinearity
0951-7715,
15
, pp.
1149
1177
.
26.
Duistermaat
,
J. J.
, 1984, “
Non-Integrability of the 1:1:2 Resonance
,”
Ergod. Theory Dyn. Syst.
0143-3857,
4
, pp.
553
568
.
27.
Wiesenfeld
,
L.
, 2004, “
Local Separatrices for Hamiltonians With Symmetries
,”
J. Phys. A
0305-4470,
37
, pp.
L143
L149
.
28.
Popov
,
A. A.
, 2004, “
The Application of Hamiltonian Dynamics and Averaging to Nonlinear Shell Vibration
,”
Comput. Struct.
0045-7949,
82
, pp.
2659
2670
.
29.
Lynch
,
P.
, and
Houghton
,
C.
, 2004, “
Pulsation and Precession of the Resonant Swinging Spring
,”
Physica D
0167-2789,
190
, pp.
38
62
.
You do not currently have access to this content.