Abstract

Few reports study the effects of the anatomical structure of the iliac vein on hemodynamics and the methods to reduce and delay in-stent thrombosis. The anatomical structure of iliac vein stenosis was used to establish vascular models with different stenosis rates, taper angle, and left branch tilt angle in the work. The influence of anatomical structure on hemodynamics was revealed through theoretical research and in vitro experimental verification. A real iliac vein model was built based on computed tomography angiography (CTA) images, and hemorheological parameters including time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI) and relative residence time (RRT) were analyzed by computational fluid dynamics (CFD). The results showed that iliac vein stenosis could significantly increase the wall shear stress (WSS) of the blood vessels at the stenosis site and outside the intersection area, which was easy to produce eddy currents in the distal blood vessels. With the increased taper angle, the proportion of low-wall shear stress areas and the risk of thrombosis increased. A small tilt angle could aggravate the influence of narrow blood vessels on the blood flow characteristics and vascular wall. The numerical simulation results were consistent with the theoretical research results, and the experimental study verified the correctness of the simulation. The work is helpful to further understand the hemodynamic characteristics of the iliac vein, providing a scientific reference for clinical treatment and diagnosis.

References

1.
Li
,
J. Y.
,
Chen
,
H. B.
,
Chen
,
W. J.
,
Zhou
,
K. F.
,
Xu
,
Z. C.
,
Xu
,
M. S.
, and
Sun
,
Z. C.
,
2021
, “
Novel Typing of Iliac Vein Compression in Asymptomatic Individuals Evaluated by Contrast Enhanced CT
,”
Surg. Radiol. Anat.
,
43
(
7
), pp.
1149
1157
.10.1007/s00276-021-02678-w
2.
Ma
,
Y.
,
2016
, “
Case Analysis of 202 Inpatients With Varicose Veins of Lower Limbs in a Hospital of Changchun City
,” M.A. thesis,
Jilin University
, Changchun, China.
3.
Gaibov
,
A. D.
,
Nematzoda
,
O.
,
Burieva
,
S. M.
, and
Kalmykov
,
E. L.
,
2020
, “
Experience of Application of Mechanochemical Scleroobliteration in Treatment for Recurrence of Lower Extremity Varicose Vein Disease
,”
I. P. Pavlov Russ. Med. Biol. Herald
,
28
(
1
), pp.
57
66
.10.23888/PAVLOVJ202028157-66
4.
Granata
,
A.
,
Maccarrone
,
R.
,
Di Lullo
,
L.
,
Morale
,
W.
,
Battaglia
,
G. G.
,
Di Nicolo
,
P.
,
Bellasi
,
A.
, et al.,
2021
, “
Feasibility of Routine Ultrasound-Guided Percutaneous Transluminal Angioplasty in the Treatment of Native Arteriovenous Fistula Dysfunction
,”
J. Vasc. Access
,
22
(
5
), pp.
739
743
.10.1177/1129729820943076
5.
Xu
,
W. Y.
,
2020
, “
The Clinical Effect of Balloon Dilatation Assisted Catheter Thrombolytic Therapy for Acute Iliofemoral Vein Thrombosis
,” M.A. thesis,
Zhengzhou University
, Zhengzhou, China.
6.
Zhang
,
X. C.
,
2020
, “
Efficacy Analysis of Acute Lower Extremity Arterial Embolization in Two Surgical Methods
,” M.A. thesis,
Lanzhou University
, Lanzhou, China.
7.
Qian
,
X. Q.
,
Zhang
,
X. H.
,
Li
,
Y.
, and
Liu
,
Z. C.
,
2009
, “
Numerical Simulation of Coronary Blood Flow Dynamics Based on CT Angiography Reconstruction
,”
Med. Biomech.
,
24
(
S1
), pp.
46
54
.
8.
Chen
,
Y.
,
Wei
,
X.
,
Zhang
,
Y. C.
,
Yuan
,
D.
,
Tian
,
X. B.
,
Jiang
,
W. T.
, and
Li
,
Z. Y.
,
2018
, “
Hemodynamic Analysis of Stanford Type B Aortic Dissection Based on Computational Fluid Dynamics
,”
Med. Biomech.
,
33
(
6
), pp.
490
495
.10.16156/j.1004-7220.2018.06.003
9.
Taylor
,
C. A.
,
Fonte
,
T. A.
, and
Min
,
J. K.
,
2013
, “
Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve: Scientific Basis
,”
J. Am. Coll. Cardiol.
,
61
(
22
), pp.
2233
2241
.10.1016/j.jacc.2012.11.083
10.
Song
,
X. T.
,
Zheng
,
Y. H.
,
Song
,
X. J.
,
Wang
,
X. B.
, and
Ye
,
W.
,
2021
, “
An Image Analysis of the Major Angles Along the Pathway of Iliac Veins Involved in Endovenous Interventions
,”
J. Vasc. Surg.: Venous Lymphatic Disord.
,
9
(
1
), pp.
81
87
.10.1016/j.jvsv.2020.06.014
11.
Sheng
,
H. J.
, and
Sun
,
S. Q.
,
2005
, “
Study on the Morphology of Left Common Iliac Vein and Its Clinical Significance
,”
Chin. J. of Clin. Anat.
,
6
, pp.
612
616
.
12.
Li
,
Y.
,
Zhang
,
X.
,
Li
,
Z. Y.
,
Abdul
,
Q. N.
,
Dai
,
Q. M.
,
Tong
,
J. Y.
,
Feng
,
Y.
,
Shen
,
C. X.
,
Liu
,
N. F.
, and
Ma
,
G. S.
,
2018
, “
Effect of Coronary Artery Contortion On Hemodynamics: A Case Study
,”
Med. Biomech.
,
33
(
3
), pp.
229
233
.
13.
Chen
,
Y.
,
Xiong
,
Y.
,
Jiang
,
W. T.
,
Wong
,
M. S.
,
Yan
,
F.
,
Wang
,
Q. Y.
, and
Fan
,
Y. B.
,
2016
, “
Numerical Simulation on the Effects of Drug-Eluting Stents With Different Bending Angles on Hemodynamics and Drug Distribution
,”
Med. Biol. Eng. Comput.
,
54
(
12
), pp.
1859
1870
.10.1007/s11517-016-1488-7
14.
Lu
,
S.
, and
Zhang
,
S. S.
,
2019
, “
Effect of Arterial Curvature on Hemodynamics and Mass Transport
,”
Biorheology
,
56
(
4
), pp.
253
263
.10.3233/BIR-190215
15.
Wong
,
K. K. L.
,
Wu
,
J. H.
,
Liu
,
G. Y.
,
Huang
,
W. H.
, and
Ghista
,
D. N.
,
2020
, “
Coronary Arteries Hemodynamics: Effect of Arterial Geometry on Hemodynamic Parameters Causing Atherosclerosis
,”
Med. Biol. Eng. Comput.
,
58
(
4
), pp.
1831
1843
.10.1007/s11517-020-02185-x
16.
Pinho
,
N.
,
Sousa
,
L. C.
,
Castro
,
C. F.
,
Antonio
,
C. C.
,
Carvalho
,
M.
,
Ferreira
,
W.
,
Ladeiras-Lopes
,
R.
,
Ferreira
,
N. D.
,
Braga
,
P.
,
Bettencourt
,
N.
, and
Pinto
,
S. I. S.
,
2019
, “
The Impact of the Right Coronary Artery Geometric Parameters on Hemodynamic Performance
,”
Cardiovasc. Eng. Technol.
,
10
(
2
), pp.
257
270
.10.1007/s13239-019-00403-8
17.
Shen
,
C.
,
Gharleghi
,
R.
,
Li
,
D. D.
,
Stevens
,
M.
,
Dokos
,
S.
, and
Beier
,
S.
,
2021
, “
Secondary Flow in Bifurcations-Important Effects of Curvature, Bifurcation Angle and Stents
,”
J. Biomech.
,
129
, p.
110755
.10.1016/j.jbiomech.2021.110755
18.
Zhang
,
C.
,
Xie
,
S.
,
Li
,
S. Y.
,
Pu
,
F.
,
Deng
,
X. Y.
,
Fan
,
Y. B.
, and
Li
,
D. Y.
,
2012
, “
Flow Patterns and Wall Shear Stress Distribution in Human Internal Carotid Arteries: The Geometric Effect on the Risk for Stenoses
,”
J. Biomech.
,
45
(
1
), pp.
83
89
.10.1016/j.jbiomech.2011.10.001
19.
Raben
,
J. S.
,
Morlacchi
,
S.
,
Burzotta
,
F.
,
Migliavacca
,
F.
, and
Vlachos
,
P. P.
,
2015
, “
Local Blood Flow Patterns in Stented Coronary Bifurcations: An Experimental and Numerical Study
,”
J. Appl. Biomater. Fundam. Mater.
,
13
(
2
), pp.
116
126
.10.5301/jabfm.5000217
20.
Gijsen
,
F. J.
,
Allanic
,
E.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1999
, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady Flow in a 90 Degrees Curved Tube
,”,
J. Biomech.
,
32
(
7
), pp.
705
713
.10.1016/S0021-9290(99)00014-7
21.
Luo
,
K.
,
Jiang
,
W. T.
,
Yu
,
C.
,
Tian
,
X. B.
,
Zhou
,
Z. H.
, and
Ding
,
Y.
,
2019
, “
Fluid-Solid Interaction Analysis on Iliac Bifurcation Artery: A Numerical Study
,”
Int. J. Comput. Methods
,
16
(
7
), p.
1850112
.10.1142/S0219876218501128
22.
Qiao
,
A. K.
,
Hou
,
Y. Y.
, and
Hou
,
Y.
,
2015
, “
Finite Element Analysis of the Influence of Geometric Configuration of Coronary Artery Stenosis on Blood Flow Reserve Fraction
,”
Chin. J. Biomed. Eng.
,
34
(
2
), pp.
198
203
.
23.
Sandeep
,
S.
, and
Shine
,
S. R.
,
2021
, “
Effect of Stenosis and Dilatation on the Hemodynamic Parameters Associated With Left Coronary Artery-ScienceDirect
,”
Comput. Methods Programs Biomed.
,
204
, p.
106052
.10.1016/j.cmpb.2021.106052
24.
DiCarlo
,
A. L.
,
Holdsworth
,
D. W.
, and
Poepping
,
T. L.
,
2019
, “
Study of the Effect of Stenosis Severity and Non-Newtonian Viscosity on Multidirectional Wall Shear Stress and Flow Disturbances in the Carotid Artery Using Particle Image Velocimetry
,”
Med. Eng. Phys.
,
65
, pp.
8
23
.10.1016/j.medengphy.2018.12.023
25.
Fallahi
,
H
,
Shirani
,
E
, and
Zohravi
,
E.
,
2021
, “
Hemodynamic Analysis of Coronary Artery Bypass Grafting With Elastic Walls and Different Stenoses
,”
Sci. Iran., Trans. B
,
28
, pp.
773
784
.10.24200/SCI.2020.53378.3211
26.
He
,
S. C.
,
Liu
,
W. L.
,
Qu
,
K.
,
Yin
,
T. Y.
,
Qiu
,
J. H.
,
Li
,
Y.
,
Yuan
,
K. S.
,
Zhang
,
H. J.
, and
Wang
,
G. X.
,
2020
, “
Effects of Different Positions of Intravascular Stent Implantation in Stenosed Vessels on In-stent restenosis: An experimental and numerical simulation study
,”
J. Biomech.
,
113
, p.
110089
.10.1016/j.jbiomech.2020.110089
27.
Tomaszewski
,
M.
,
Sybilski
,
K.
,
Baranowski
,
P.
, and
Malachowski
,
J.
,
2020
, “
Experimental and Numerical Flow Analysis Through Arteries With Stent Using Particle Image Velocimetry and Computational Fluid Dynamics Method
,”
Biocybern. Biomed. Eng.
,
40
(
2
), pp.
740
751
.10.1016/j.bbe.2020.02.010
28.
Pandey
,
R.
,
Kumar
,
M.
, and
Srivastav
,
V. K.
,
2020
, “
Numerical Computation of Blood Hemodynamic Through Constricted Human Left Coronary Artery: Pulsatile Simulations
,”
Comput. Methods Programs Biomed.
,
197
, p.
105661
.10.1016/j.cmpb.2020.105661
29.
Tedaldi
,
E.
,
Montanari
,
C.
,
Aycock
,
K. I.
,
Sturla
,
F.
,
Redaelli
,
A.
, and
Manning
,
K. B.
,
2018
, “
An Experimental and Computational Study of the Inferior Vena Cava Hemodynamics Under Respiratory-Induced Collapse of the Infrarenal IVC
,”
Med. Eng. Phys.
,
54
, pp.
44
55
.10.1016/j.medengphy.2018.02.003
30.
Gallagher
,
M. B.
,
Aycock
,
K. I.
,
Craven
,
B. A.
, and
Manning
,
K. B.
,
2018
, “
Steady Flow in a Patient-Averaged Inferior Vena Cava—Part I: Particle Image Velocimetry Measurements at Rest and Exercise Conditions
,”
Cardiovas. Eng. Technol.
,
9
(
12
), pp.
641
653
.10.1007/s13239-018-00390-2
31.
Ding
,
H.
,
Yang
,
L.
,
Lan
,
H. L.
,
Shang
,
K.
,
Zhang
,
S. N.
,
Sun
,
A. J.
,
Wang
,
K. Q.
,
Shen
,
L. X.
, and
Ge
,
J. B.
,
2014
, “
In Vitro Simulation of Blood Flow Dynamics in Mural Coronary Artery
,”
Med. Biomech.
,
29
(
5
), pp.
432
439
.
32.
Zhang
,
G. W.
,
2017
, “
Study on Hemodynamic Characteristics of Personalized Aortic Dissection
,” M.A. thesis,
Kunming University of Science and Technology
, Kunming, China.
33.
Ferrarini
,
A.
,
Finotello
,
A.
,
Salsano
,
G.
,
Auricchio
,
F.
,
Palombo
,
D.
,
Spinella
,
G.
,
Pane
,
B.
, and
Conti
,
M.
,
2021
, “
Impact of Leg Bending in the Patient-Specific Computational Fluid Dynamics of Popliteal Stenting
,”
Acta Mech. Sin.
,
37
(
2
), pp.
279
291
.10.1007/s10409-021-01066-2
34.
Cai
,
Y.
,
Zhu
,
S. W.
, and
Fu
,
L. D.
,
2020
, “
Simulation Analysis of the Effect of Texture Parameters of Biomimetic Surface on Hemodynamic Characteristics of Vascular Stent
,”
Mach. Des. Manuf.
,
8
, pp.
117
120
.
35.
Cen
,
R. J.
,
Tan
,
Z. D.
, and
Chen
,
Z. Z.
,
1994
, “
The Stress Analysis of Vessel Wall in the Entrance Region of A Tapered Vessel
,”
Appl. Math. Mech.
,
15
, pp.
1139
1147
.10.1007/BF02451985
36.
Cillo-Velasco
,
P. R.
,
Luciano
,
R. D.
,
Kelly
,
M. E.
,
Peeling
,
L.
,
Bergstrom
,
D. J.
,
Chen
,
X. B.
, and
Malve
,
M.
,
2020
, “
The Hemodynamics of Aneurysms Treated with Flow-Diverting Stents Considering both Stent and Aneurysm/Artery Geometries
,”
Appl. Sci.
,
10
(
15
), pp.
5239
5258
.10.3390/app10155239
37.
Liang
,
Y. B.
,
Muhtar
,
K.
, and
Mai
,
M. T. A
,
2021
, “
Analysis of Hemodynamic Characteristics of Individual Cervical Aneurysms
,”
Med. Biomech.
,
36
(
3
), pp.
396
401
.
38.
Jiang
,
J. B.
,
2020
, “
Hemodynamic Analysis and Stent Implantation Planning in Conical Vessels with Multiple Stenosis
,” M.A. thesis,
Jiangsu University
, Zhenjiang, China.
39.
Tang
,
D.
,
Yuan
,
Q.
,
Wang
,
Z. C.
, and
Song
,
H. W.
,
2018
, “
Hemodynamic Analysis of Coronary Artery Stents in Curved Vessels
,”
Chin. J. Tissue Eng. Res.
,
22
(
22
), pp.
3563
3568
.10.3969/j.issn.2095-4344.0886
You do not currently have access to this content.