Abstract

The mechanics of distal femur fracture fixation has been widely studied in bench tests that employ a variety of approaches for holding and constraining femurs to apply loads. No standard test methods have been adopted for these tests and the impact of test setup on inferred construct mechanics has not been reported. Accordingly, the purpose of this study was to use finite element models to compare the mechanical performance of a supracondylar osteotomy with lateral plating under conditions that replicate several common bench test methods. A literature review was used to define a parameterized virtual model of a plated distal femur osteotomy in axial compression loading with four boundary condition sets ranging from minimally to highly constrained. Axial stiffness, fracture gap closure, and transverse motion at the fracture line were recorded for a range of applied loads and bridge spans. The results showed that construct mechanical performance was highly sensitive to boundary conditions imposed by the mechanical test fixtures. Increasing the degrees of constraint, for example, by potting and rigidly clamping one or more ends of the specimen, caused up to a 25× increase in axial stiffness of the construct. Transverse motion and gap closure at the fracture line, which is an important driver of interfragmentary strain, was also largely influenced by the constraint test setup. These results suggest that caution should be used when comparing reported results between bench tests that use different fixtures and that standardization of testing methods is needed in this field.

References

1.
Khan
,
A. M.
,
Tang
,
Q. O.
, and
Spicer
,
D.
,
2017
, “
The Epidemiology of Adult Distal Femoral Shaft Fractures in a Central London Major Trauma Centre Over Five Years
,”
Open Orthop. J.
,
11
(
1
), pp.
1277
1291
.10.2174/1874325001711011277
2.
Myers
,
P.
,
Laboe
,
P.
,
Johnson
,
K. J.
,
Fredericks
,
P. D.
,
Crichlow
,
R. J.
,
Maar
,
D. C.
, and
Weber
,
T. G.
,
2018
, “
Patient Mortality in Geriatric Distal Femur Fractures
,”
J. Orthop. Trauma
,
32
(
3
), pp.
111
115
.10.1097/BOT.0000000000001078
3.
Martinet
,
O.
,
Cordey
,
J.
,
Harder
,
Y.
,
Maier
,
A.
,
Bühler
,
M.
, and
Barraud
,
G.
,
2000
, “
The Epidemiology of Fractures of the Distal Femur
,”
Injury
,
31
, pp.
62
94
.10.1016/S0020-1383(00)80034-0
4.
Court-Brown
,
C. M.
, and
Caesar
,
B.
,
2006
, “
Epidemiology of Adult Fractures: A Review
,”
Injury
,
37
(
8
), pp.
691
697
.10.1016/j.injury.2006.04.130
5.
Enninghorst
,
N.
,
McDougall
,
D.
,
Evans
,
J. A.
,
Sisak
,
K.
, and
Balogh
,
Z. J.
,
2013
, “
Population-Based Epidemiology of Femur Shaft Fractures
,”
J. Trauma Acute Care Surg.
,
74
(
6
), pp.
1516
1520
.10.1097/TA.0b013e31828c3dc9
6.
Gangavalli
,
A. K.
, and
Nwachuku
,
C. O.
,
2016
, “
Management of Distal Femur Fractures in Adults. An Overview of Options
,”
Orthop. Clin. North Am.
,
47
(
1
), pp.
85
96
.10.1016/j.ocl.2015.08.011
7.
Elkins
,
J.
,
Marsh
,
J. L.
,
Lujan
,
T.
,
Peindl
,
R.
,
Kellam
,
J.
,
Anderson
,
D. D.
, and
Lack
,
W.
,
2016
, “
Motion Predicts Clinical Callus Formation
,”
J. Bone Jt. Surg. Am.
,
98-A
(
4
), pp.
267
284
.10.2106/JBJS.O.00684
8.
Habet
,
N.
,
Elkins
,
J.
,
Peindl
,
R.
,
Killen
,
C.
, and
Lack
,
W. D.
,
2019
, “
Far Cortical Locking Fixation of Distal Femur Fractures is Dominated by Shear at Clinically Relevant Bridge Spans
,”
J. Orthop. Trauma
,
33
(
2
), pp.
92
96
.10.1097/BOT.0000000000001341
9.
Kandemir
,
U.
,
Augat
,
P.
,
Konowalczyk
,
S.
,
Wipf
,
F.
,
Von Oldenburg
,
G.
, and
Schmidt
,
U.
,
2017
, “
Implant Material, Type of Fixation at the Shaft, and Position of Plate Modify Biomechanics of Distal Femur Plate Osteosynthesis
,”
J. Orthop. Trauma
,
31
(
8
), pp.
241
246
.10.1097/BOT.0000000000000860
10.
Schmidt
,
U.
,
Penzkofer
,
R.
,
Bachmaier
,
S.
, and
Augat
,
P.
,
2013
, “
Implant Material and Design Alter Construct Stiffness in Distal Femur Locking Plate Fixation: A Pilot Study
,”
Clin. Orthop. Relat. Res.
,
471
(
9
), pp.
2808
2814
.10.1007/s11999-013-2867-0
11.
Otto
,
R. J.
,
Moed
,
B. R.
, and
Bledsoe
,
J. G.
,
2009
, “
Biomechanical Comparison of Polyaxial-Type Locking Plates and a Fixed-Angle Locking Plate for Internal Fixation of Distal Femur Fractures
,”
J. Orthop. Trauma
,
23
(
9
), pp.
645
652
.10.1097/BOT.0b013e3181a567c8
12.
Wähnert
,
D.
,
Greiner
,
J.
,
Brianza
,
S.
,
Kaltschmidt
,
C.
,
Vordemvenne
,
T.
, and
Kaltschmidt
,
B.
,
2021
, “
Strategies to Improve Bone Healing: Innovative Surgical Implants Meet Nano-/Micro-Topography of Bone Scaffolds
,”
Biomedicines
,
9
(
7
), p.
746
.10.3390/biomedicines9070746
13.
Wolf
,
D. I. S.
,
Janousek
,
A.
,
Pfeil
,
J.
,
Veith
,
W.
,
Haas
,
F.
,
Duda
,
G.
, and
Claes
,
L.
,
1998
, “
The Effects of External Mechanical Stimulation on the Healing of Diaphyseal Osteotomies Fixed by Flexible External Fixation
,”
Clin. Biomech.
,
13
(
4–5
), pp.
359
364
.10.1016/S0268-0033(98)00097-7
14.
Goodship
,
A. E.
, and
Kenwright
,
J.
,
1985
, “
The Influence of Induced Micromovent Upon the Healing of Experimental Tibial Fractures
,”
Br. Editor. Soc. Bone Jt. Surg.
,
67-B
(
4
), pp.
650
655
.10.1302/0301-620X.67B4.4030869
15.
Schell
,
H.
,
Epari
,
D. R.
,
Kassi
,
J. P.
,
Bragulla
,
H.
,
Bail
,
H. J.
, and
Duda
,
G. N.
,
2005
, “
The Course of Bone Healing is Influenced by the Initial Shear Fixation Stability
,”
J. Orthop. Res.
,
23
(
5
), pp.
1022
1028
.10.1016/j.orthres.2005.03.005
16.
Wähnert
,
D.
,
Lange
,
J. H.
,
Schulze
,
M.
,
Gehweiler
,
D.
,
Kösters
,
C.
, and
Raschke
,
M. J.
,
2013
, “
A Laboratory Investigation to Assess the Influence of Cement Augmentation of Screw and Plate Fixation in a Simulation of Distal Femoral Fracture of Osteoporotic and Nonosteoporotic Bone
,”
Bone Jt. J.
,
95-B
(
10
), pp.
1406
1409
.10.1302/0301-620X.95B10.31220
17.
Liang
,
B.
,
Ding
,
Z.
,
Shen
,
J.
,
Zhai
,
W.
,
Kang
,
L.
,
Zhou
,
L.
,
Sha
,
M.
, and
Liang
,
D.
,
2012
, “
A Distal Femoral Supra-Condylar Plate: Biomechanical Comparison With Condylar Plate and First Clinical Application for Treatment of Supracondylar Fracture
,”
Int. Orthop.
,
36
(
8
), pp.
1673
1679
.10.1007/s00264-012-1529-2
18.
Salas
,
C.
,
Mercer
,
D.
,
Decoster
,
T. A.
, and
Taha
,
M. M. R.
,
2011
, “
Experimental and Probabilistic Analysis of Distal Femoral Periprosthetic Fracture: A Comparison of Locking Plate and Intramedullary Nail Fixation. Part B: Probabilistic Investigation
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
2
), pp.
175
182
.10.1080/10255842.2010.539207
19.
Heiney
,
J. P.
,
Barnett
,
M. D.
,
Vrabec
,
G. A.
,
Schoenfeld
,
A. J.
,
Baji
,
A.
, and
Njus
,
G. O.
,
2009
, “
Distal Femoral Fixation: A Biomechanical Comparison of Trigen Retrograde Intramedullary (I.M.) Nail, Dynamic Condylar Screw (DCS), and Locking Compression Plate (LCP) Condylar Plate
,”
J. Trauma - Inj. Infect. Crit. Care
,
66
(
2
), pp.
443
449
.10.1097/TA.0b013e31815edeb8
20.
Brinkman
,
J. M.
,
Hurschler
,
C.
,
Agneskirchner
,
J.
,
Lobenhoffer
,
P.
,
Castelein
,
R. M.
, and
van Heerwaarden
,
R. J.
,
2014
, “
Biomechanical Testing of Distal Femur Osteotomy Plate Fixation Techniques: The Role of Simulated Physiological Loading
,”
J. Exp. Orthop.
,
1
(
1
), pp.
1
7
.10.1186/s40634-014-0001-1
21.
Khalafi
,
A.
,
Curtiss
,
S.
,
Hazelwood
,
R. A. S.
, and
Wolinsky
,
P.
,
2006
, “
The Effect of Plate Rotation on the Stiffness of Femoral LISS: A Mechanical Study
,”
J. Orthop. Trauma
,
20
(
8
), pp.
542
546
.10.1097/01.bot.0000244996.45127.ad
22.
Higgins
,
T. F.
,
Pittman
,
G.
,
Hines
,
J.
, and
Bachus
,
K. N.
,
2007
, “
Biomechanical Analysis of Distal Femur Fracture Fixation: Fixed-Angle Screw-Plate Construct Versus Condylar Blade Plate
,”
J. Orthop. Trauma
,
21
(
1
), pp.
43
46
.10.1097/BOT.0b013e31802bb372
23.
Chao
,
P.
,
Conrad
,
B. P.
,
Lewis
,
D. D.
,
Horodyski
,
M. B.
, and
Pozzi
,
A.
,
2013
, “
Effect of Plate Working Length on Plate Stiffness and Cyclic Fatigue Life in a Cadaveric Femoral Fracture Gap Model Stabilized With a 12-Hole 2.4 Mm Locking Compression Plate
,”
BMC Vet. Res.
,
9
(
125
), pp.
1
7
.10.1186/1746-6148-9-125
24.
Stoffel
,
K.
,
Dieter
,
U.
,
Stachowiak
,
G.
,
Gächter
,
A.
, and
Kuster
,
M. S.
,
2003
, “
Biomechanical Testing of the LCP - How Can Stability in Locked Internal Fixators Be Controlled?
,”
Injury
,
34
(
suppl. 2
), pp.
11
SB19
.10.1016/j.injury.2003.09.021
25.
McLachlin
,
S.
,
Kreder
,
H.
,
Ng
,
M.
,
Jenkinson
,
R.
,
Whyne
,
C.
, and
Larouche
,
J.
,
2017
, “
Proximal Screw Configuration Alters Peak Plate Strain Without Changing Construct Stiffness in Comminuted Supracondylar Femur Fractures
,”
J. Orthop. Trauma
,
31
(
12
), pp.
418
424
.10.1097/BOT.0000000000000956
26.
Henschel
,
J.
,
Tsai
,
S.
,
Fitzpatrick
,
D. C.
,
Marsh
,
J. L.
,
Madey
,
S. M.
, and
Bottlang
,
M.
,
2017
, “
Comparison of 4 Methods for Dynamization of Locking Plates: Differences in the Amount and Type of Fracture Motion
,”
J. Orthop. Trauma
,
31
(
10
), pp.
531
537
.10.1097/BOT.0000000000000879
27.
Märdian
,
S.
,
Schaser
,
K. D.
,
Duda
,
G. N.
, and
Heyland
,
M.
,
2015
, “
Working Length of Locking Plates Determines Interfragmentary Movement in Distal Femur Fractures Under Physiological Loading
,”
Clin. Biomech.
,
30
(
4
), pp.
391
396
.10.1016/j.clinbiomech.2015.02.006
28.
Märdian
,
S.
,
Schmölz
,
W.
,
Schaser
,
K. D.
,
Duda
,
G. N.
, and
Heyland
,
M.
,
2015
, “
Interfragmentary Lag Screw Fixation in Locking Plate Constructs Increases Stiffness in Simple Fracture Patterns
,”
Clin. Biomech.
,
30
(
8
), pp.
814
819
.10.1016/j.clinbiomech.2015.06.008
29.
Wilkens
,
K. J.
,
Curtiss
,
S.
, and
Lee
,
M. A.
,
2008
, “
Polyaxial Locking Plate Fixation in Distal Femur Fractures: A Biomechanical Comparison
,”
J. Orthop. Trauma
,
22
(
9
), pp.
624
628
.10.1097/BOT.0b013e31818896b3
30.
Du
,
Y. R.
,
Ma
,
J. X.
,
Wang
,
S.
,
Sun
,
L.
,
Wang
,
Y.
,
Lu
,
B.
,
Bai
,
H. h.
,
Hu
,
Y. C.
, and
Ma
,
X. L.
,
2019
, “
Comparison of Less Invasive Stabilization System Plate and Retrograde Intramedullary Nail in the Fixation of Femoral Supracondylar Fractures in the Elderly: A Biomechanical Study
,”
Orthop. Surg.
,
11
(
2
), pp.
311
317
.10.1111/os.12449
31.
Fontenot
,
P. B.
,
Diaz
,
M.
,
Stoops
,
K.
,
Barrick
,
B.
,
Santoni
,
B.
, and
Mir
,
H.
,
2019
, “
Supplementation of Lateral Locked Plating for Distal Femur Fractures: A Biomechanical Study
,”
J. Orthop. Trauma
,
33
(
12
), pp.
642
648
.10.1097/BOT.0000000000001591
32.
Park
,
K. H.
,
Oh
,
C. W.
,
Park
,
I. H.
,
Kim
,
J. W.
,
Lee
,
J. H.
, and
Kim
,
H. J.
,
2019
, “
Additional Fixation of Medial Plate Over the Unstable Lateral Locked Plating of Distal Femur Fractures: A Biomechanical Study
,”
Injury
,
50
(
10
), pp.
1593
1598
.10.1016/j.injury.2019.06.032
33.
Zhang
,
J.
,
Wei
,
Y.
,
Yin
,
W.
,
Shen
,
Y.
, and
Cao
,
S.
,
2018
, “
Biomechanical and Clinical Comparison of Single Lateral Plate and Double Plating of Comminuted Supracondylar Femoral Fractures
,”
Acta Orthop. Belg.
,
84
(
2
), pp.
141
148
.https://pubmed.ncbi.nlm.nih.gov/30462596/
34.
Bliemel
,
C.
,
Oberkircher
,
L.
,
Bockmann
,
B.
,
Petzold
,
E.
,
Aigner
,
R.
,
Heyse
,
T. J.
,
Ruchholtz
,
S.
, and
Buecking
,
B.
,
2016
, “
Impact of Cement-Augmented Condylar Screws in Locking Plate Osteosynthesis for Distal Femoral Fractures — A Biomechanical Analysis
,”
Injury
,
47
(
12
), pp.
2688
2693
.10.1016/j.injury.2016.10.013
35.
Alexander
,
J.
,
Morris
,
R. P.
,
Kaimrajh
,
D.
,
Milne
,
E.
,
Latta
,
L.
,
Flink
,
A.
, and
Lindsey
,
R. W.
,
2015
, “
Biomechanical Evaluation of Periprosthetic Refractures Following Distal Femur Locking Plate Fixation
,”
Injury
,
46
(
12
), pp.
2368
2373
.10.1016/j.injury.2015.09.033
36.
Mäkinen
,
T. J.
,
Dhotar
,
H. S.
,
Fichman
,
S. G.
,
Gunton
,
M. J.
,
Woodside
,
M.
,
Safir
,
O.
,
Backstein
,
D.
,
Willett
,
T. L.
, and
Kuzyk
,
P. R. T.
,
2015
, “
Periprosthetic Supracondylar Femoral Fractures Following Knee Arthroplasty: A Biomechanical Comparison of Four Methods of Fixation
,”
Int. Orthop.
,
39
(
9
), pp.
1737
1742
.10.1007/s00264-015-2764-0
37.
Başci
,
O.
,
Karakaşli
,
A.
,
Kumtepe
,
E.
,
Güran
,
O.
, and
Havitçioğlu
,
H.
,
2015
, “
Combination of Anatomical Locking Plate and Retrograde Intramedullary Nail in Distal Femoral Fractures: Comparison of Mechanical Stability
,”
Eklem Hast. ve Cerrahisi
,
26
(
1
), pp.
21
26
.10.5606/ehc.2015.06
38.
Wähnert
,
D.
,
Hofmann-Fliri
,
L.
,
Richards
,
R. G.
,
Gueorguiev
,
B.
,
Raschke
,
M. J.
, and
Windolf
,
M.
,
2014
, “
Implant Augmentation: Adding Bone Cement to Improve the Treatment of Osteoporotic Distal Femur Fractures: A Biomechanical Study Using Human Cadaver Bones
,”
Medicine (United States)
,
93
(
23
), pp.
1
6
.10.1097/MD.0000000000000166
39.
Bliemel
,
C.
,
Buecking
,
B.
,
Mueller
,
T.
,
Wack
,
C.
,
Koutras
,
C.
,
Beck
,
T.
,
Ruchholtz
,
S.
, and
Zettl
,
R.
,
2015
, “
Distal Femoral Fractures in the Elderly: Biomechanical Analysis of a Polyaxial Angle-Stable Locking Plate Versus a Retrograde Intramedullary Nail in a Human Cadaveric Bone Model
,”
Arch. Orthop. Trauma Surg.
,
135
(
1
), pp.
49
58
.10.1007/s00402-014-2111-8
40.
El-Zayat
,
B. F.
,
Efe
,
T.
,
Ruchholtz
,
S.
,
Khatib
,
S.
,
Timmesfeld
,
N.
,
Krüger
,
A.
, and
Zettl
,
R.
,
2014
, “
Mono- Versus Polyaxial Locking Plates in Distal Femur Fractures - A Biomechanical Comparison of the Non-Contact-Bridging- (NCB) and the PERILOC-Plate
,”
BMC Musculoskelet. Disord.
,
15
(
1
), pp.
1
7
.10.1186/1471-2474-15-369
41.
Narsaria
,
N.
,
Singh
,
A. K.
,
Rastogi
,
A.
, and
Singh
,
V.
,
2014
, “
Biomechanical Analysis of Distal Femoral Fracture Fixation: Dynamic Condylar Screw Versus Locked Compression Plate
,”
J. Orthop. Sci.
,
19
(
5
), pp.
770
775
.10.1007/s00776-014-0583-6
42.
Singh
,
A. K.
,
Rastogi
,
A.
, and
Singh
,
V.
,
2013
, “
Biomechanical Comparison of Dynamic Condylar Screw and Locking Compression Plate Fixation in Unstable Distal Femoral Fractures: An In Vitro Study
,”
Indian J. Orthop.
,
47
(
6
), pp.
615
620
.10.4103/0019-5413.121594
43.
Assari
,
S.
,
Kaufmann
,
A.
,
Darvish
,
K.
,
Park
,
J.
,
Haw
,
J.
,
Safadi
,
F.
, and
Rehman
,
S.
,
2013
, “
Biomechanical Comparison of Locked Plating and Spiral Blade Retrograde Nailing of Supracondylar Femur Fractures
,”
Injury
,
44
(
10
), pp.
1340
1345
.10.1016/j.injury.2013.04.016
44.
Mehling
,
I.
,
Hoehle
,
P.
,
Sternstein
,
W.
,
Blum
,
J.
, and
Rommens
,
P. M.
,
2013
, “
Nailing Versus Plating for Comminuted Fractures of the Distal Femur: A Comparative Biomechanical In Vitro Study of Three Implants
,”
Eur. J. Trauma Emerg. Surg.
, 39(2), pp.
139
146
.10.1007/s00068-012-0247-1
45.
Ahmadi
,
S.
,
Shah
,
S.
,
Wunder
,
J. S.
,
Schemitsch
,
E. H.
,
Ferguson
,
P. C.
, and
Zdero
,
R.
,
2013
, “
The Biomechanics of Three Different Fracture Fixation Implants for Distal Femur Repair in the Presence of a Tumor-Like Defect
,”
J. Eng. Med.
,
227
(
1
), pp.
78
86
.10.1177/0954411912454368
46.
Wähnert
,
D.
,
Lange
,
J. H.
,
Schulze
,
M.
,
Lenschow
,
S.
,
Stange
,
R.
, and
Raschke
,
M. J.
,
2013
, “
The Potential of Implant Augmentation in the Treatment of Osteoporotic Distal Femur Fractures: A Biomechanical Study
,”
Injury
,
44
(
6
), pp.
808
812
.10.1016/j.injury.2012.08.053
47.
Beingessner
,
D.
,
Moon
,
E.
,
Barei
,
D.
, and
Morshed
,
S.
,
2011
, “
Biomechanical Analysis of the Less Invasive Stabilization System for Mechanically Unstable Fractures of the Distal Femur: Comparison of Titanium Versus Stainless Steel and Bicortical Versus Unicortical Fixation
,”
J. Trauma Inj. Infect. Crit. Care
,
71
(
3
), pp.
620
624
.10.1097/TA.0b013e31820337c4
48.
Wähnert
,
D.
,
Hoffmeier
,
K.
,
Fröber
,
R.
,
Hofmann
,
G. O.
, and
Mückley
,
T.
,
2011
, “
Distal Femur Fractures of the Elderly - Different Treatment Options in a Biomechanical Comparison
,”
Injury
,
42
(
7
), pp.
655
659
.10.1016/j.injury.2010.09.009
49.
Wähnert
,
D.
,
Hoffmeier
,
K. L.
,
von Oldenburg
,
G.
,
Fröber
,
R.
,
Hofmann
,
G. O.
, and
Mückley
,
T.
,
2010
, “
Internal Fixation of Type-C Distal Femoral Fractures in Osteoporotic Bone
,”
J. Bone Jt. Surg. Am.
,
92
(
6
), pp.
1442
1452
.10.2106/JBJS.H.01722
50.
Jaakkola
,
J. I.
,
Lundy
,
D. W.
,
Moore
,
T.
,
Jones
,
B.
,
Ganey
,
T. M.
, and
Hutton
,
W. C.
,
2002
, “
Supracondylar Femur Fracture Fixation Mechanical Comparison of the 95 Condylar Side Plate and Screw Versus 95 Angled Blade Plate
,”
Acta Orthop. Scand.
,
73
(
1
), pp.
72
76
.10.1080/000164702317281440
51.
Jazrawi
,
L. M.
,
Kummer
,
F. J.
,
Simon
,
J. A.
,
Bai
,
B.
,
Hunt
,
S. A.
,
Egol
,
K. A.
, and
Koval
,
K. J.
,
2000
, “
New Technique for Treatment of Unstable Distal Femur Fractures by Locked Double-Plating: Case Report and Biomechanical Evaluation
,”
J. Trauma - Inj. Infect. Crit. Care
,
48
(
1
), pp.
87
92
.10.1097/00005373-200001000-00015
52.
Simonian
,
P. T.
,
Thompson
,
G. J.
,
Emley
,
W.
,
Harrington
,
R. M.
,
Benirschke
,
S. K.
, and
Swiontkowski
,
M. F.
,
1998
, “
Angulated Screw Placement in the Lateral Condylar Buttress Plate for Supracondylar Femoral Fractures
,”
Injury
,
29
(
2
), pp.
101
104
.10.1016/S0020-1383(97)00140-X
53.
Bong
,
M. R.
,
Egol
,
K. A.
,
Koval
,
K. J.
,
Kummer
,
F. J.
,
Su
,
E. T.
,
Iesaka
,
K.
,
Bayer
,
J.
, and
Di Cesare
,
P. E.
,
2002
, “
Comparison of the LISS and a Retrograde-Inserted Supracondylar Intramedullary Nail for Fixation of a Periprosthetic Distal Femur Fracture Proximal to a Total Knee Arthroplasty
,”
J. Arthroplasty
,
17
(
7
), pp.
876
881
.10.1054/arth.2002.34817
54.
Firoozbakhsh
,
K.
,
Behzadi
,
K.
,
Decoster
,
T. A.
,
Moneim
,
M. S.
, and
Naraghi
,
F. F.
,
1995
, “
Mechanics of Retrograde Nail Versus Plate Fixation for Supracondylar Femur Fractures
,”
J. Orthop. Trauma
,
9
(
2
), pp.
152
157
.10.1097/00005131-199504000-00011
55.
Harder
,
Y.
,
Martinet
,
O.
,
Barraud
,
G. E.
,
Cordey
,
J.
, and
Regazzoni
,
P.
,
1999
, “
The Mechanics of Internal Fixation of Fractures of the Distal Femur: A Comparison of the Condylar Screw (DCS) With the Condylar Plate (CP)
,”
Injury
,
30
(
suppl. 1
), pp.
SA31
SA39
.10.1016/S0020-1383(99)00124-2
56.
Prayson
,
M. J.
,
Datta
,
D. K.
, and
Marshall
,
M. P.
,
2001
, “
Mechanical Comparison of Endosteal Substitution and Lateral Plate Fixation in Supracondylar Fractures of the Femur
,”
J. Orthop. Trauma
,
15
(
2
), pp.
96
100
.10.1097/00005131-200102000-00004
57.
Marti
,
A.
,
Fankhauser
,
C.
,
Frenk
,
A.
,
Cordey
,
J.
, and
Gasser
,
B.
,
2001
, “
Biomechanical Evaluation of the Less Invasive Stabilization System for the Interna Fixation of Distal Femur Fractures
,”
J. Orthop. Trauma
,
15
(
7
), pp.
482
487
.10.1097/00005131-200109000-00004
58.
Zlowodzki
,
M.
,
Williamson
,
S.
,
Cole
,
P. A.
,
Zardiackas
,
L. D.
, and
Kregor
,
P. J.
,
2004
, “
Biomechanical Evaluation of the Less Invasive Stabilization System, Angled Blade Plate, and Retrograde Intramedullary Nail for the Internal Fixation of Distal Femur Fractures
,”
J. Orthop. Trauma
,
18
(
8
), pp.
494
502
.10.1097/00005131-200409000-00004
59.
Tejwani
,
N. C.
,
Park
,
S.
,
Iesaka
,
K.
, and
Kummer
,
F.
,
2005
, “
The Effect of Locked Distal Screws in Retrograde Nailing of Osteoporotic Distal Femur Fractures: A Laboratory Study Using Cadaver Femurs
,”
J. Orthop. Trauma
,
19
(
6
), pp.
380
383
.10.1097/01.bot.0000155312.12510.bd
60.
Zlowodzki
,
M.
,
Williamson
,
S.
,
Zardiackas
,
L. D.
, and
Kregor
,
P. J.
,
2006
, “
Biomechanical Evaluation of the Less Invasive Stabilization System and the 95-Degree Angled Blade Plate for the Internal Fixation of Distal Femur Fractures in Human Cadaveric Bones With High Bone Mineral Density
,”
J. Trauma - Inj. Infect. Crit. Care
,
60
(
4
), pp.
836
840
.10.1097/01.ta.0000208129.10022.f8
61.
Stoffel
,
K.
,
Lorenz
,
K. U.
, and
Kuster
,
M. S.
,
2007
, “
Biomechanical Considerations in Plate Osteosynthesis: The Effect of Plate-to-Bone Compression With and Without Angular Screw Stability
,”
J. Orthop. Trauma
,
21
(
6
), pp.
362
368
.10.1097/BOT.0b013e31806dd921
62.
Todorov
,
D.
,
Zderic
,
I.
,
Richards
,
R. G.
,
Lenz
,
M.
,
Knobe
,
M.
,
Enchev
,
D.
,
Baltov
,
A.
,
Gueorguiev
,
B.
, and
Stoffel
,
K.
,
2018
, “
Is Augmented LISS Plating Biomechanically Advantageous Over Conventional LISS Plating in Unstable Osteoporotic Distal Femoral Fractures?
,”
J. Orthop. Res.
,
36
(
10
), pp.
2604
2611
.10.1002/jor.24047
63.
Bottlang
,
M.
,
Fitzpatrick
,
D. C.
,
Sheerin
,
D.
,
Kubiak
,
E.
,
Gellman
,
R.
,
Vande Zandschulp
,
C.
,
Doornink
,
J.
,
Earley
,
K.
, and
Madey
,
S. M.
,
2014
, “
Risk Factors for Failure of Locked Plate Fixation of Distal Femur Fractures: An Analysis of 335 Cases
,”
J. Orthop. Trauma
,
28
(
4
), pp.
181
188
.10.1097/01.bot.0000438368.44077.04
64.
Cui
,
S.
,
Bledsoe
,
J. G.
,
Israel
,
H.
,
Watson
,
J. T.
, and
Cannada
,
L. K.
,
2014
, “
Locked Plating of Comminuted Distal Femur Fractures: Does Unlocked Screw Placement Affect Stability and Failure?
,”
J. Orthop. Trauma
,
28
(
2
), pp.
90
96
.10.1097/BOT.0b013e31829f9504
65.
Wright
,
D. J.
,
Desanto
,
D. J.
,
McGarry
,
M. H.
,
Lee
,
T. Q.
, and
Scolaro
,
J. A.
,
2020
, “
Supplemental Fixation of Supracondylar Distal Femur Fractures: A Biomechanical Comparison of Dual-Plate and Plate-Nail Constructs
,”
J. Orthop. Trauma
,
34
(
8
), pp.
434
440
.10.1097/BOT.0000000000001749
66.
Märdian
,
S.
,
Schmölz
,
W.
,
Schaser
,
K. D.
,
Duda
,
G. N.
, and
Heyland
,
M.
,
2019
, “
Locking Plate Constructs Benefit From Interfragmentary Lag Screw Fixation With Decreased Shear Movements and More Predictable Fracture Gap Motion in Simple Fracture Patterns
,”
Clin. Biomech.
,
70
(
May
), pp.
89
96
.10.1016/j.clinbiomech.2019.08.008
67.
Inacio
,
J. V.
,
Malige
,
A.
,
Schroeder
,
J. T.
,
Nwachuku
,
C. O.
, and
Dailey
,
H. L.
,
2019
, “
Mechanical Characterization of Bone Quality in Distal Femur Fractures Using Pre-Operative Computed Tomography Scans
,”
Clin. Biomech.
,
67
(
April
), pp.
20
26
.10.1016/j.clinbiomech.2019.04.014
68.
Inzana
,
J. A.
,
Varga
,
P.
, and
Windolf
,
M.
,
2016
, “
Implicit Modeling of Screw Threads for Efficient Finite Element Analysis of Complex Bone-Implant Systems
,”
J. Biomech.
,
49
(
9
), pp.
1836
1844
.10.1016/j.jbiomech.2016.04.021
69.
Schileo
,
E.
,
Dall'Ara
,
E.
,
Taddei
,
F.
,
Malandrino
,
A.
,
Schotkamp
,
T.
,
Baleani
,
M.
, and
Viceconti
,
M.
,
2008
, “
An Accurate Estimation of Bone Density Improves the Accuracy of Subject-Specific Finite Element Models
,”
J. Biomech.
,
41
(
11
), pp.
2483
2491
.10.1016/j.jbiomech.2008.05.017
70.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
(
7
), pp.
897
904
.10.1016/S0021-9290(03)00071-X
71.
Albareda
,
J.
,
Gabarre
,
S.
,
Rosell
,
J.
,
Puértolas
,
S.
,
Ibarz
,
E.
,
Redondo
,
B.
,
Gómez
,
J.
,
Blanco
,
N.
,
Sánchez
,
M.
,
Herrera
,
A.
, and
Gracia
,
L.
,
2021
, “
Biomechanical Behavior of Retrograde Intramedullary Nails in Distal Femoral Fractures
,”
Injury
, 52(2), pp.
76
86
.10.1016/j.injury.2021.01.052
72.
Chen
,
S.
,
Chiang
,
M.
,
Hung
,
C.
,
Lin
,
S.
, and
Chang
,
H.
,
2014
, “
The Knee Finite Element Comparison of Retrograde Intramedullary Nailing and Locking Plate Fi Xation With/Without an Intramedullary Allograft for Distal Femur Fracture Following Total Knee Arthroplasty
,”
Knee
,
21
(
1
), pp.
224
231
.10.1016/j.knee.2013.03.006
73.
Zhao
,
S.
,
Arnold
,
M.
,
Abel
,
R. L.
,
Cobb
,
J. P.
,
Ma
,
S.
,
Hansen
,
U.
, and
Boughton
,
O.
,
2018
, “
Standardizing Compression Testing for Measuring the Stiffness of Human Bone
,”
Bone Jt. Res.
,
7
(
8
), pp.
524
538
.10.1302/2046-3758.78.BJR-2018-0025.R1
74.
Lujan
,
T. J.
,
Henderson
,
C. E.
,
Madey
,
S. M.
,
Fitzpatrick
,
D. C.
,
Marsh
,
J. L.
, and
Bottlang
,
M.
,
2010
, “
Locked Plating of Distal Femur Fractures Leads to Inconsistent and Asymmetric Callus Formation
,”
J. Orthop. Trauma
,
24
(
3
), pp.
156
162
.10.1097/BOT.0b013e3181be6720
75.
Ferguson
,
S. J.
,
Wyss
,
U. P.
, and
Pichora
,
D. R.
,
1996
, “
Finite Element Stress Analysis of a Hybrid Fracture Fixation Plate
,”
Med. Eng. Phys.
,
18
(
3
), pp.
241
250
.10.1016/1350-4533(95)00041-0
76.
Shah
,
S.
,
Kim
,
S. Y. R.
,
Dubov
,
A.
,
Schemitsch
,
E. H.
,
Bougherara
,
H.
, and
Zdero
,
R.
,
2011
, “
The Biomechanics of Plate Fixation of Periprosthetic Femoral Fractures Near the Tip of a Total Hip Implant: Cables, Screws, or Both?
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
225
(
9
), pp.
845
856
.10.1177/0954411911413060
77.
Chen
,
G.
,
Schmutz
,
B.
,
Wullschleger
,
M.
,
Pearcy
,
M. J.
, and
Schuetz
,
M. A.
,
2010
, “
Computational Investigations of Mechanical Failures of Internal Plate Fixation
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
224
(
1
), pp.
119
126
.10.1243/09544119JEIM670
78.
Speirs
,
A. D.
,
Heller
,
M. O.
,
Duda
,
G. N.
, and
Taylor
,
W. R.
,
2007
, “
Physiologically Based Boundary Conditions in Finite Element Modelling
,”
J. Biomech.
,
40
(
10
), pp.
2318
2323
.10.1016/j.jbiomech.2006.10.038
You do not currently have access to this content.