Cell mechanics has been shown to regulate stem cell differentiation. We have previously reported that altered cell stiffness of mesenchymal stem cells can delay or facilitate biochemically directed differentiation. One of the factors that can affect the cell stiffness is cholesterol. However, the effect of cholesterol on differentiation of human mesenchymal stem cells remains elusive. In this paper, we demonstrate that cholesterol is involved in the modulation of the cell stiffness and subsequent adipogenic differentiation. Rapid cytoskeletal actin reorganization was evident and correlated with the cell's Young's modulus measured using atomic force microscopy. In addition, the level of membrane-bound cholesterol was found to increase during adipogenic differentiation and inversely varied with the cell stiffness. Furthermore, cholesterol played a key role in the regulation of the cell morphology and biomechanics, suggesting its crucial involvement in mechanotransduction. To better understand the underlying mechanisms, we investigated the effect of cholesterol on the membrane–cytoskeleton linker proteins (ezrin and moesin). Cholesterol depletion was found to upregulate the ezrin expression which promoted cell spreading, increased Young's modulus, and hindered adipogenesis. In contrast, cholesterol enrichment increased the moesin expression, decreased Young's modulus, and induced cell rounding and facilitated adipogenesis. Taken together, cholesterol appears to regulate the stem cell mechanics and adipogenesis through the membrane-associated linker proteins.

References

1.
Titushkin
,
I.
, and
Cho
,
M.
,
2006
, “
Distinct Membrane Mechanical Properties of Human Mesenchymal Stem Cells Determined Using Laser Optical Tweezers
,”
Biophys. J.
,
90
(
7
), pp.
2582
2591
.
2.
Yu
,
H.
,
Tay
,
C. Y.
,
Leong
,
W. S.
,
Tan
,
S. C. W.
,
Liao
,
K.
, and
Tan
,
L. P.
,
2010
, “
Mechanical Behavior of Human Mesenchymal Stem Cells During Adipogenic and Osteogenic Differentiation
,”
Biochem. Biophys. Res. Commun.
,
393
(
1
), pp.
150
155
.
3.
Darling
,
E. M.
,
Topel
,
M.
,
Zauscher
,
S.
,
Vail
,
T. P.
, and
Guilak
,
F.
,
2008
, “
Viscoelastic Properties of Human Mesenchymally-Derived Stem Cells and Primary Osteoblasts, Chondrocytes, and Adipocytes
,”
J. Biomech.
,
41
(
2
), pp.
454
464
.
4.
Wang
,
J. H. C.
, and
Thampatty
,
B. P.
,
2008
, “
Mechanobiology of Adult and Stem Cells
,”
Int. Rev. Cell Mol. Biol.
,
271
, pp.
301
346
.
5.
Bhadriraju
,
K.
, and
Hansen
,
L. K.
,
2002
, “
Extracellular Matrix-and Cytoskeleton-Dependent Changes in Cell Shape and Stiffness
,”
Exp. Cell Res.
,
278
(
1
), pp.
92
100
.
6.
An
,
S. S.
,
Kim
,
J.
,
Ahn
,
K.
,
Trepat
,
X.
,
Drake
,
K. J.
,
Kumar
,
S.
,
Ling
,
G.
,
Purington
,
C.
,
Rangasamy
,
T.
,
Kensler
,
T. W.
,
Mitzner
,
W.
,
Fredberg
,
J. J.
, and
Biswal
,
S.
,
2009
, “
Cell Stiffness, Contractile Stress and the Role of Extracellular Matrix
,”
Biochem. Biophys. Res. Commun.
,
382
(
4
), pp.
697
703
.
7.
Rianna
,
C.
, and
Manfred
,
R.
,
2016
, “
Cell Mechanics as a Marker for Diseases: Biomedical Applications of AFM
,”
AIP Conf. Proc.
,
1760
(
1
), p.
020057
.
8.
Babu
,
P. K. V.
,
Rianna
,
C.
,
Belge
,
G.
,
Mirastschijski
,
U.
, and
Radmacher
,
M.
,
2018
, “
Mechanical and Migratory Properties of Normal, Scar, and Dupuytren's Fibroblasts
,”
J. Mol. Recognit.
,
31
(
9
), p.
e2719
.
9.
Darling
,
E. M.
,
Zauscher
,
S.
,
Block
,
J. A.
, and
Guilak
,
F.
,
2007
, “
A Thin-Layer Model for Viscoelastic, Stress-Relaxation Testing of Cells Using Atomic Force Microscopy: Do Cell Properties Reflect Metastatic Potential?
,”
Biophys. J.
,
92
(
5
), pp.
1784
1791
.
10.
Guck
,
J.
,
Schinkinger
,
S.
,
Lincoln
,
B.
,
Wottawah
,
F.
,
Ebert
,
S.
,
Romeyke
,
M.
,
Lenz
,
D.
,
Erickson
,
H. M.
,
Ananthakrishnan
,
R.
,
Mitchell
,
D.
,
Käs
,
J.
,
Ulvick
,
S.
, and
Bilby
,
C.
, 2005, “
Optical Deformability as an Inherent Cell Marker for Testing Malignant Transformation and Metastatic Competence
,”
Biophys. J.
,
88
(5), pp. 3689–3698.
11.
Thoumine
,
O.
, and
Ott
,
A.
,
1997
, “
Comparison of the Mechanical Properties of Normal and Transformed Fibroblasts
,”
Biorheology
,
34
(
4–5
), pp.
309
326
.
12.
Shentu
,
T. P.
,
Singh
,
D. K.
,
Oh
,
M. J.
,
Sun
,
S.
,
Sadaat
,
L.
,
Makino
,
A.
,
Mazzone
,
T.
,
Subbaiah
,
P. V.
,
Cho
,
M.
, and
Levitan
,
I.
, 2012, “
The Role of Oxysterols in Control of Endothelial Stiffness
,”
J. Lipid Res.
,
53
(7), pp. 1348–1358.
13.
Khatibzadeh
,
N.
,
Gupta
,
S.
,
Farrell
,
B.
,
Brownell
,
W. E.
, and
Anvari
,
B.
,
2012
, “
Effects of Cholesterol on Nano-Mechanical Properties of the Living Cell Plasma Membrane
,”
Soft Matter
,
8
(
32
), pp.
8350
8360
.
14.
Byfield
,
F. J.
,
Aranda-Espinoza
,
H.
,
Romanenko
,
V. G.
,
Rothblat
,
G. H.
, and
Levitan
,
I.
,
2004
, “
Cholesterol Depletion Increases Membrane Stiffness of Aortic Endothelial Cells
,”
Biophys. J.
,
87
(
5
), pp.
3336
3343
.
15.
Byfield
,
F. J.
,
Hoffman
,
B. D.
,
Romanenko
,
V. G.
,
Fang
,
Y.
,
Crocker
,
J. C.
, and
Levitan
,
I.
,
2006
, “
Evidence for the Role of Cell Stiffness in Modulation of Volume‐Regulated Anion Channels
,”
Acta Physiol.
,
187
(
1–2
), pp.
285
294
.
16.
Titushkin
,
I.
, and
Cho
,
M.
,
2009
, “
Regulation of Cell Cytoskeleton and Membrane Mechanics by Electric Field: Role of Linker Proteins
,”
Biophys. J.
,
96
(
2
), pp.
717
728
.
17.
Baker
,
N.
,
Sohn
,
J.
, and
Tuan
,
R. S.
,
2015
, “
Promotion of Human Mesenchymal Stem Cell Osteogenesis by PI3-Kinase/Akt Signaling, and the Influence of Caveolin-1/Cholesterol Homeostasis
,”
Stem Cell Res. Ther.
,
6
(
1
), p. 238.
18.
Titushkin
,
I.
, and
Cho
,
M.
,
2007
, “
Modulation of Cellular Mechanics During Osteogenic Differentiation of Human Mesenchymal Stem Cells
,”
Biophys. J.
,
93
(
10
), pp.
3693
3702
.
19.
González-Cruz
,
R. D.
,
Fonseca
,
V. C.
, and
Darling
,
E. M.
,
2012
, “
Cellular Mechanical Properties Reflect the Differentiation Potential of Adipose-Derived Mesenchymal Stem Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
,
109
(
24
), pp.
E1523
E1529
.
20.
Harris
,
A. R.
, and
Charras
,
G. T.
,
2011
, “
Experimental Validation of Atomic Force Microscopy-Based Cell Elasticity Measurements
,”
Nanotechnology
,
22
(
34
), p.
345102
.
21.
Mahammad
,
S.
, and
Parmryd
,
I.
,
2015
, “
Cholesterol Depletion Using Methyl-β-Cyclodextrin
,”
Methods in Membrane Lipids
,
Humana Press
,
New York
.
22.
Christian
,
A. E.
,
Haynes
,
M. P.
,
Phillips
,
M. C.
, and
Rothblat
,
G. H.
,
1997
, “
Use of Cyclodextrins for Manipulating Cellular Cholesterol Content
,”
J. Lipid Res.
,
38
(
11
), pp.
2264
2272
.http://www.jlr.org/content/38/11/2264.full.pdf+html
23.
Titushkin
,
I.
,
Sun
,
S.
,
Paul
,
A.
, and
Cho
,
M.
,
2013
, “
Control of Adipogenesis by Ezrin, Radixin and Moesin-Dependent Biomechanics Remodeling
,”
J. Biomech.
,
46
(
3
), pp.
521
526
.
24.
Titushkin
,
I.
, and
Cho
,
M.
,
2011
, “
Altered Osteogenic Commitment of Human Mesenchymal Stem Cells by ERM Protein-Dependent Modulation of Cellular Biomechanics
,”
J. Biomech.
,
44
(
15
), pp.
2692
2698
.
25.
Merkestein
,
M.
,
Laber
,
S.
,
McMurray
,
F.
,
Andrew
,
D.
,
Sachse
,
G.
,
Sanderson
,
J.
,
Li
,
M.
,
Usher
,
S.
,
Sellayah
,
D.
,
Ashcroft
,
F. M.
, and
Cox
,
R. D.
,
2015
, “
FTO Influences Adipogenesis by Regulating Mitotic Clonal Expansion
,”
Nat. Commun.
,
6
, p. 6792.
26.
Takechi-Haraya
,
Y.
,
Sakai-Kato
,
K.
,
Abe
,
Y.
,
Kawanishi
,
T.
,
Okuda
,
H.
, and
Goda
,
Y.
,
2016
, “
Atomic Force Microscopic Analysis of the Effect of Lipid Composition on Liposome Membrane Rigidity
,”
Langmuir
,
32
(
24
), pp.
6074
6082
.
27.
Redondo-Morata
,
L.
,
Giannotti
,
M. I.
, and
Sanz
,
F.
,
2012
, “
Influence of Cholesterol on the Phase Transition of Lipid Bilayers: A Temperature-Controlled Force Spectroscopy Study
,”
Langmuir
,
28
(
35
), pp.
12851
12860
.
28.
Wenz
,
J. J.
, and
Barrantes
,
F. J.
,
2003
, “
Steroid Structural Requirements for Stabilizing or Disrupting Lipid Domains
,”
Biochemistry
,
42
(
48
), pp.
14267
14276
.
29.
Gracià
,
R. S.
,
Bezlyepkina
,
N.
,
Knorr
,
R. L.
,
Lipowsky
,
R.
, and
Dimova
,
R.
,
2010
, “
Effect of Cholesterol on the Rigidity of Saturated and Unsaturated Membranes: Fluctuation and Electrodeformation Analysis of Giant Vesicles
,”
Soft Matter
,
6
(
7
), pp.
1472
1482
.
30.
Genova
,
J.
,
Bivas
,
I.
, and
Marinov
,
R.
,
2014
, “
Cholesterol Influence on the Bending Elasticity of Lipid Membranes
,”
Colloids Surf., A
,
460
, pp.
79
82
.
31.
Sun
,
M.
,
Northup
,
N.
,
Marga
,
F.
,
Huber
,
T.
,
Byfield
,
F. J.
,
Levitan
,
I.
, and
Forgacs
,
G.
,
2007
, “
The Effect of Cellular Cholesterol on Membrane-Cytoskeleton Adhesion
,”
J. Cell Sci.
,
120
(
13
), pp.
2223
2231
.
32.
Norman
,
L. L.
,
Oetama
,
R. J.
,
Dembo
,
M.
,
Byfield
,
F.
,
Hammer
,
D. A.
,
Levitan
,
I.
, and
Aranda-Espinoza
,
H.
,
2010
, “
Modification of Cellular Cholesterol Content Affects Traction Force, Adhesion and Cell Spreading
,”
Cell. Mol. Bioeng.
,
3
(
2
), pp.
151
162
.
33.
Mukherjee
,
S.
,
Zha
,
X.
,
Tabas
,
I.
, and
Maxfield
,
F. R.
,
1998
, “
Cholesterol Distribution in Living Cells: Fluorescence Imaging Using Dehydroergosterol as a Fluorescent Cholesterol Analog
,”
Biophys. J.
,
75
(
4
), pp.
1915
1925
.
34.
Lange
,
Y.
,
Swaisgood
,
M. H.
,
Ramos
,
B. V.
, and
Steck
,
T. L.
,
1989
, “
Plasma Membranes Contain Half the Phospholipid and 90% of the Cholesterol and Sphingomyelin in Cultured Human Fibroblasts
,”
J. Biol. Chem.
,
264
(
7
), pp.
3786
3793
.
35.
Prattes
,
S.
,
Horl
,
G.
,
Hammer
,
A.
,
Blaschitz
,
A.
,
Graier
,
W. F.
,
Sattler
,
W.
,
Zechner
,
R.
, and
Steyrer
,
E.
,
2000
, “
Intracellular Distribution and Mobilization of Unesterified Cholesterol in Adipocytes: Triglyceride Droplets Are Surrounded by Cholesterol-Rich ER-Like Surface Layer Structures
,”
J. Cell Sci.
,
113
(
17
), pp.
2977
2989
.http://jcs.biologists.org/content/joces/113/17/2977.full.pdf
36.
Niggli
,
V.
, and
Rossy
,
J.
,
2008
, “
Ezrin/Radixin/Moesin: Versatile Controllers of Signaling Molecules and of the Cortical Cytoskeleton
,”
Int. J. Biochem. Cell Biol.
,
40
(
3
), pp.
344
349
.
37.
Fehon
,
R. G.
,
McClatchey
,
A. I.
, and
Bretscher
,
A.
,
2010
, “
Organizing the Cell Cortex: The Role of ERM Proteins
,”
Nat. Rev. Mol. Cell Biol.
,
11
(
4
), pp.
276
287
.
38.
Ou-Yang
,
M.
,
Liu
,
H. R.
,
Zhang
,
Y.
,
Zhu
,
X.
, and
Yang
,
Q.
,
2011
, “
ERM Stable Knockdown by siRNA Reduced In Vitro Migration and Invasion of Human SGC-7901 Cells
,”
Biochimie
,
93
(
5
), pp.
954
961
.
39.
Kahsai
,
A. W.
,
Zhu
,
S.
, and
Fenteany
,
G.
,
2010
, “
G Protein-Coupled Receptor Kinase 2 Activates Radixin, Regulating Membrane Protrusion and Motility in Epithelial Cells
,”
Biochim. Biophys. Acta, Mol. Cell Res.
,
1803
(
2
), pp.
300
310
.
40.
Stokka
,
A. J.
,
Mosenden
,
R.
,
Ruppelt
,
A.
,
Lygren
,
B.
, and
Taskén
,
K.
,
2010
, “
The Adaptor Protein EBP50 Is Important for Localization of the Protein Kinase A–Ezrin Complex in T-Cells and the Immunomodulating Effect of cAMP
,”
Biochem. J.
,
425
(
2
), pp.
381
388
.
41.
Tomas
,
E. M.
,
Chau
,
T. A.
, and
Madrenas
,
J.
,
2002
, “
Clustering of a Lipid-Raft Associated Pool of ERM Proteins at the Immunological Synapse Upon T Cell Receptor or CD28 Ligation
,”
Immunol. Lett.
,
83
(
2
), pp.
143
147
.
42.
Itoh
,
K.
,
Sakakibara
,
M.
,
Yamasaki
,
S.
,
Takeuchi
,
A.
,
Arase
,
H.
,
Miyazaki
,
M.
,
Nakajima
,
N.
,
Okada
,
M.
, and
Saito
,
T.
,
2002
, “
Cutting Edge: Negative Regulation of Immune Synapse Formation by Anchoring Lipid Raft to Cytoskeleton Through Cbp-EBP50-ERM Assembly
,”
J. Immunol.
,
168
(
2
), pp.
541
544
.
43.
McBeath
,
R.
,
Pirone
,
D. M.
,
Nelson
,
C. M.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2004
, “
Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment
,”
Dev. Cell
,
6
(
4
), pp.
483
495
.
44.
Vining
,
K. H.
, and
Mooney
,
D. J.
,
2017
, “
Mechanical Forces Direct Stem Cell Behaviour in Development and Regeneration
,”
Nat. Rev. Mol. Cell Biol.
,
18
(
12
), pp.
728
742
.
45.
Kilian
,
K. A.
,
Bugarija
,
B.
,
Lahn
,
B. T.
, and
Mrksich
,
M.
,
2010
, “
Geometric Cues for Directing the Differentiation of Mesenchymal Stem Cells
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
11
), pp.
4872
4877
.
46.
Sonnino
,
S.
, and
Prinetti
,
A.
,
2013
, “
Membrane Domains and the ‘Lipid Raft’ Concept
,”
Curr. Med. Chem.
,
20
(
1
), pp.
4
21
.
47.
Sordella
,
R.
,
Jiang
,
W.
,
Chen
,
G. C.
,
Curto
,
M.
, and
Settleman
,
J.
,
2003
, “
Modulation of Rho GTPase Signaling Regulates a Switch Between Adipogenesis and Myogenesis
,”
Cell
,
113
(
2
), pp.
147
158
.
48.
Diep
,
D. T. V.
,
Hong
,
K.
,
Khun
,
T.
,
Zheng
,
M.
,
Jun
,
H. S.
,
Kim
,
Y. B.
, and
Chun
,
K. H.
,
2018
, “
Anti-Adipogenic Effects of KD025 (SLx-2119), a ROCK2-Specific Inhibitor, in 3T3-L1 Cells
,”
Sci. Rep.
,
8
(
1
), p. 2477.
49.
Sim
,
C. K.
,
Kim
,
S. Y.
,
Brunmeir
,
R.
,
Zhang
,
Q.
,
Li
,
H.
,
Dharmasegaran
,
D.
,
Leong
,
C.
,
Lim
,
Y. Y.
,
Han
,
W.
, and
Xu
,
F.
,
2017
, “
Regulation of White and Brown Adipocyte Differentiation by RhoGAP DLC1
,”
PLoS One
,
12
(
3
), p.
e0174761
.
50.
Zhang
,
W. J.
,
Li
,
P. X.
,
Guo
,
X. H.
, and
Huang
,
Q. B.
,
2017
, “
Role of Moesin, Src, and ROS in Advanced Glycation End Product‐Induced Vascular Endothelial Dysfunction
,”
Microcirculation
,
24
(
3
), p.
e12358
.
51.
Lee
,
W.
,
Kwon
,
O. K.
,
Han
,
M. S.
,
Lee
,
Y. M.
,
Kim
,
S. W.
,
Kim
,
K. M.
,
Lee
,
T.
,
Lee
,
S.
, and
Bae
,
J. S.
,
2015
, “
Role of Moesin in HMGB1-Stimulated Severe Inflammatory Responses
,”
Thromb. Haemostasis
,
114
(
2
), pp.
350
363
.
52.
Jiang
,
L.
,
Phang
,
J. M.
,
Yu
,
J.
,
Harrop
,
S. J.
,
Sokolova
,
A. V.
,
Duff
,
A. P.
,
Wilk
,
K. E.
,
Alkhamici
,
H.
,
Breit
,
S. N.
,
Valenzuela
,
S. M.
,
Brown
,
L. J.
, and
Curmi
,
P. M. G.
,
2014
, “
CLIC Proteins, Ezrin, Radixin, Moesin and the Coupling of Membranes to the Actin Cytoskeleton: A Smoking Gun?
,”
Biochim. Biophys. Acta, Biomembr.
,
1838
(
2
), pp.
643
657
.
53.
Chen
,
K.
,
He
,
H.
,
Xie
,
Y.
,
Zhao
,
L.
,
Zhao
,
S.
,
Wan
,
X.
,
Yang
,
W.
, and
Mo
,
Z.
,
2015
, “
miR-125a-3p and miR-483-5p Promote Adipogenesis Via Suppressing the RhoA/ROCK1/ERK1/2 Pathway in Multiple Symmetric Lipomatosis
,”
Sci. Rep.
,
5
, p. 11909.
You do not currently have access to this content.