Delivery of biological fluids, such as surfactant solutions, into lungs is a major strategy to treat respiratory disorders including respiratory distress syndrome that is caused by insufficient or dysfunctional natural lung surfactant. The instilled solution forms liquid plugs in lung airways. The plugs propagate downstream in airways by inspired air or ventilation, continuously split at airway bifurcations to smaller daughter plugs, simultaneously lose mass from their trailing menisci, and eventually rupture. A uniform distribution of the instilled biofluid in lung airways is expected to increase the treatments success. The uniformity of distribution of instilled liquid in the lungs greatly depends on the splitting of liquid plugs between daughter airways, especially in the first few generations from which airways of different lobes of lungs emerge. To mechanistically understand this process, we developed a bioengineering approach to computationally design three-dimensional bifurcating airway models using morphometric data of human lungs, fabricate physical models, and examine dynamics of liquid plug splitting. We found that orientation of bifurcating airways has a major effect on the splitting of liquid plugs between daughter airways. Changing the relative gravitational orientation of daughter tubes with respect to the horizontal plane caused a more asymmetric splitting of liquid plugs. Increasing the propagation speed of plugs partially counteracted this effect. Using airway models of smaller dimensions reduced the asymmetry of plug splitting. This work provides a step toward developing delivery strategies for uniform distribution of therapeutic fluids in the lungs.

References

1.
West
,
J. B.
,
2015
,
Respiratory Physiology: The Essentials
,
LWW
, Philadelphia, PA.
2.
Lewis
,
J. F.
, and
Veldhuizen
,
R. A.
,
2006
, “
The Future of Surfactant Therapy During ALI/ARDS
,”
Semin. Respir. Crit. Care Med.
,
27
(
4
), pp.
377
388
.
3.
Goel
,
A.
,
Baboota
,
S.
,
Sahni
,
J. K.
, and
Ali
,
J.
,
2013
, “
Exploring Targeted Pulmonary Delivery for Treatment of Lung Cancer
,”
Int. J. Pharm. Invest.
,
3
(
1
), pp.
8
14
.
4.
Tavana
,
H.
,
Huh
,
D.
,
Groberg
,
J. B.
, and
Takayama
,
S.
,
2009
, “
Microfluidics, Lung Surfactant, and Respiratory Disorders
,”
Lab Med.
,
40
(
4
), pp.
203
209
.
5.
Espinosa
,
F. F.
, and
Kamm
,
R. D.
,
1998
, “
Meniscus Formation During Tracheal Instillation of Surfactant
,”
J Appl Physiol.
,
85
(
1
), pp.
266
272
.
6.
Grotberg
,
J. B.
,
2011
, “
Respiratory Fluid Mechanics
,”
Phys. Fluids
,
23
(
2
), p.
21301
.
7.
Borgas
,
M. S.
, and
Groberg
,
J. B.
,
1988
, “
Monolayer Flow on a Thin Film
,”
J. Fluid Mech.
,
193
(
1
), pp.
151
170
.
8.
Gaver
,
D. P.
, and
Groberg
,
J. B.
,
1992
, “
Droplet Spreading on a Thin Viscous Film
,”
J. Fluid Mech.
,
235
(
1
), pp.
399
414
.
9.
Halpern
,
D.
,
Jensen
,
O. E.
, and
Grotberg
,
J. B.
,
1998
, “
A Theoretical Study of Surfactant and Liquid Delivery Into the Lung
,”
J. Appl. Physiol.
,
85
(
1
), pp.
333
352
.
10.
Espinosa
,
F. F.
, and
Kamm
,
R. D.
,
1999
, “
Bolus Dispersal Through the Lungs in Surfactant Replacement Therapy
,”
J. Appl. Physiol.
,
86
(
1
), pp.
391
410
.
11.
Grotberg
,
J. B.
,
2001
, “
Respiratory Fluid Mechanics and Transport Processes
,”
Annu. Rev. Biomed. Eng.
,
3
, pp.
421
457
.
12.
Bertram
,
C.
, and
Gaver
,
D. P.
,
2005
, “
Biofluid Mechanics of the Pulmonary System
,”
Ann. Biomed. Eng.
,
33
(
12
), pp.
1681
1688
.
13.
Yamaguchi
,
E.
,
Giannetti
,
M. J.
,
Van Houten
,
M. J.
,
Forouzan
,
O.
,
Shevkoplyas
,
S. S.
, and
Gaver
,
D. P.
,
2014
, “
The Unusual Symmetric Reopening Effect Induced by Pulmonary Surfactant
,”
J. Appl. Physiol.
,
116
(
6
), pp.
635
644
.
14.
Yamaguchi
,
E.
,
Nolan
,
L. P.
, and
Gaver
,
D. P.
,
2017
, “
Microscale Distribution and Dynamic Surface Tension of Pulmonary Surfactant Normalize the Recruitment of Asymmetric Bifurcating Airways
,”
J. Appl. Physiol.
,
122
(
5
), pp.
1167
1178
.
15.
Ody
,
C. P.
,
Baroud
,
C. N.
, and
de Langre
,
E.
,
2007
, “
Transport of Wetting Liquid Plugs in Bifurcating Microfluidic Channels
,”
J. Colloid Interface Sci.
,
308
(
1
), pp.
231
238
.
16.
Vertti-Quintero
,
N.
,
Song
,
Y.
,
Manneville
,
P.
, and
Baroud
,
C. N.
,
2012
, “
Behavior of Liquid Plugs at Bifurcations in a Microfluidic Tree Network
,”
Biomicrofluidics
,
6
(
3
), p.
034105
.
17.
Cassidy
,
K. J.
,
Gavriely
,
N.
, and
Grotberg
,
J. B.
,
2001
, “
Liquid Plug Flow in Straight and Bifurcating Tubes
,”
ASME J. Biomech. Eng.
,
123
(
6
), pp.
580
589
.
18.
Zheng
,
Y.
,
Anderson
,
J. C.
,
Suresh
,
V.
, and
Grotberg
,
J. B.
,
2005
, “
Effect of Gravity on Liquid Plug Transport Through an Airway Bifurcation Model
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
798
806
.
19.
Tavana
,
H.
,
Kuo
,
C. H.
,
Lee
,
Q. Y.
,
Mosadegh
,
B.
,
Huh
,
D.
,
Christensen
,
P. J.
,
Grotberg
,
J. B.
, and
Takayama
,
S.
,
2010
, “
Dynamics of Liquid Plugs of Buffer and Surfactant Solutions in a Micro-Engineered Pulmonary Airway Model
,”
Langmuir
,
26
(
5
), pp.
3744
3752
.
20.
Atefi
,
E.
,
Mann
,
J. A.
, Jr.
, and
Tavana
,
H.
,
2014
, “
Ultralow Interfacial Tensions of Aqueous Two-Phase Systems Measured Using Drop Shape
,”
Langmuir
,
30
(
32
), pp.
9691
9699
.
21.
Weibel
,
E. R.
, and
Gomez
,
D. M.
,
1962
, “
Architecture of the Human Lung. Use of Quantitative Methods Establishes Fundamental Relations Between Size and Number of Lung Structures
,”
Science
,
137
(
3530
), pp.
577
585
.
22.
Dickison
,
A. E.
,
1987
, “
The Normal and Abnormal Pediatric Upper Airway. Recognition and Management of Obstruction
,”
Clin. Chest Med.
,
8
(
4
), pp.
583
596
.https://www.ncbi.nlm.nih.gov/pubmed/3322644
23.
Hislop
,
A. A.
, and
Haworth
,
S. G.
,
1989
, “
Airway Size and Structure in the Normal Fetal and Infant Lung and the Effect of Premature Delivery and Artificial Ventilation
,”
Am. Rev. Respir. Dis.
,
140
(
6
), pp.
1717
1726
.
24.
Jani
,
J.
,
Valencia
,
C.
,
Cannie
,
M.
,
Vuckovic
,
A.
,
Sellars
,
M.
, and
Nicolaides
,
K. H.
,
2011
, “
Tracheal Diameter at Birth in Severe Congenital Diaphragmatic Hernia Treated by Fetal Endoscopic Tracheal Occlusion
,”
Prenatal Diagn.
,
31
(
7
), pp.
699
704
.
25.
Sauret
,
V.
,
Halson
,
P. M.
,
Brown
,
I. W.
,
Fleming
,
J. S.
, and
Bailey
,
A. G.
,
2002
, “
Study of the Three-Dimensional Geometry of the Central Conducting Airways in Man Using Computed Tomographic (CT) Images
,”
J. Anat.
,
200
(
2
), pp.
123
134
.
26.
Choi
,
J. W.
,
Kim
,
H.-C.
, and
Wicker
,
R.
,
2011
, “
Multi-Material Stereolithography
,”
J. Mater Process. Technol.
,
211
(
3
), pp.
318
328
.
27.
Hope
,
R. L.
,
Roth
,
R. N.
, and
Jacobs
,
P. A.
,
1997
, “
Adaptive Slicing With Sloping Layer Surfaces
,”
Rapid Prototype J.
,
3
(
3
), pp.
89
98
.
28.
Sabourin
,
E.
,
Houser
,
S. A.
, and
Bøhn
,
J. H.
,
1996
, “
Adaptive Slicing Using Stepwise Uniform Refinement
,”
Rapid Prototype J.
,
2
(
4
), pp.
20
26
.
29.
Lasalvia
,
M.
,
Castellani
,
S.
,
D'Antonio
,
P.
,
Perna
,
G.
,
Carbone
,
A.
,
Colia
,
A. L.
,
Maffione
,
A. B.
,
Capozzi
,
V.
, and
Conese
,
M.
,
2016
, “
Human Airway Epithelial Cells Investigated by Atomic Force Microscopy: A Hint to Cystic Fibrosis Epithelial Pathology
,”
Exp. Cell Res.
,
348
(
1
), pp.
46
55
.
30.
Petrak
,
D.
,
Atefi
,
E.
,
Yin
,
L.
,
Chilian
,
W.
, and
Tavana
,
H.
,
2014
, “
Automated, Spatio-Temporally Controlled Cell Microprinting With Polymeric Aqueous Biphasic System
,”
Biotechnol. Bioeng.
,
111
(
2
), pp.
404
412
.
31.
Tavana
,
H.
,
Appelhans
,
D.
,
Zhuang
,
R. C.
,
Zschoche
,
S.
,
Grundke
,
K.
,
Hair
,
M. L.
, and
Neumann
,
A. W.
,
2006
, “
Determination of Accurate Surface Tensions of Maleimide Copolymers Containing Fluorinated Side Chain From Contact Angle Measurements
,”
Colloid Polym. Sci.
,
284
(
5
), pp.
497
505
.
32.
Tavana
,
H.
,
Gitiafroz
,
R.
,
Hair
,
M. L.
, and
Neumann
,
A. W.
,
2004
, “
Determination of Solid Surface Tension From Contact Angles: The Role of Shape and Size of Liquid Molecules
,”
J. Adhes.
,
80
(
8
), pp.
705
725
.
33.
Corbet
,
A.
,
Bucciarelli
,
R.
,
Goldman
,
S.
,
Mammel
,
M.
,
Wold
,
D.
, and
Long
,
W.
,
1991
, “
Decreased Mortality Rate Among Small Premature Infants Treated at Birth With a Single Dose of Synthetic Surfactant: A Multicenter Controlled Trial. American Exosurf Pediatric Study Group 1
,”
J. Pediatr.
,
118
(
2
), pp.
277
284
.
34.
Fujioka
,
H.
, and
Grotberg
,
J. B.
,
2005
, “
The Steady Propagation of a Surfactant-Laden Liquid Plug in a Two-Dimensional Channel
,”
Phys. Fluids
,
17
(
8
), p. 082102.
35.
Ingenito
,
E. P.
,
Mark
,
L.
,
Morris
,
J.
,
Espinosa
,
F. F.
,
Kamm
,
R. D.
, and
Johnson
,
M.
,
1999
, “
Biophysical Characterization and Modeling of Lung Surfactant Components
,”
J. Appl. Physiol.
,
86
(
5
), pp.
1702
1714
.
36.
King
,
D. M.
,
Wang
,
Z. D.
,
Palmer
,
H. J.
,
Holm
,
B. A.
, and
Notter
,
R. H.
,
2002
, “
Bulk Shear Viscosities of Endogenous and Exogenous Lung Surfactants
,”
Am. J. Physiol-Lung C
,
282
(
2
), pp.
L277
L284
.
37.
Calderon
,
A. J.
,
Fowlkes
,
J. B.
, and
Bull
,
J. L.
,
2005
, “
Bubble Splitting in Bifurcating Tubes: A Model Study of Cardiovascular Gas Emboli Transport
,”
J. Appl. Physiol.
,
99
(
2
), pp.
479
487
.
38.
High
,
K. C.
,
Ultman
,
J. S.
, and
Karl
,
S. R.
,
1991
, “
Mechanically Induced Pendelluft Flow in a Model Airway Bifurcation During High Frequency Oscillation
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
342
347
.
39.
Tanaka
,
G.
,
Ogata
,
T.
,
Oka
,
K.
, and
Tanishita
,
K.
,
1999
, “
Spatial and Temporal Variation of Secondary Flow During Oscillatory Flow in Model Human Central Airways
,”
ASME J. Biomech. Eng.
,
121
(
6
), pp.
565
573
.
40.
Thibotuwawa Gamage
,
P.
,
Khalili
,
F.
,
Azad
,
M.
, and
Mansy
,
H.
,
2018
, “
Modeling Inspiratory Flow in a Porcine Lung Airway
,”
ASME J. Biomech. Eng.
,
140
(
6
), p.
061003
.
41.
Kleinstreuer
,
C.
, and
Zhang
,
Z.
,
2003
, “
Targeted Drug Aerosol Deposition Analysis for a Four-Generation Lung Airway Model With Hemispherical Tumors
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
197
206
.
42.
Kolanjiyil
,
A. V.
, and
Kleinstreuer
,
C.
,
2013
, “
Nanoparticle Mass Transfer From Lung Airways to Systemic Regions–Part II: Multi-Compartmental Modeling
,”
ASME J. Biomech. Eng.
,
135
(
12
), p.
121004
.
You do not currently have access to this content.