A wide range of materials have been used for the development of intervertebral cages. Poly(propylene fumarate) (PPF) has been shown to be an excellent biomaterial with characteristics similar to trabecular bone. Hydroxyapatite (HA) has been shown to enhance biocompatibility and mechanical properties of PPF. The purpose of this study was to characterize the effect of PPF augmented with HA (PPF:HA) and evaluate the feasibility of this material for the development of cervical cages. PPF was synthesized and combined with HA at PPF:HA wt:wt ratios of 100:0, 80:20, 70:30, and 60:40. Molds were fabricated for testing PPF:HA bulk materials in compression, bending, tension, and hardness according to ASTM standards, and also for cage preparation. The cages were fabricated with and without holes and with porosity created by salt leaching. The samples as well as the cages were mechanically tested using a materials testing frame. All elastic moduli as well as the hardness increased significantly by adding HA to PPF (p < 0.0001). The 20 wt % HA increased the moduli significantly compared to pure PPF (p < 0.0001). Compressive stiffness of all cages also increased with the addition of HA. HA increased the failure load of the porous cages significantly (p = 0.0018) compared with nonporous cages. PPF:HA wt:wt ratio of 80:20 proved to be significantly stiffer and stronger than pure PPF. The current results suggest that this polymeric composite can be a suitable candidate material for intervertebral body cages.

References

1.
Navarro
,
M.
,
Michiardi
,
A.
,
Castano
,
O.
, and
Planell
,
J.
,
2008
, “
Biomaterials in Orthopaedics
,”
J. R. Soc. Interface
,
5
(
27
), pp.
1137
1158
.
2.
Geetha
,
M.
,
Singh
,
A.
,
Asokamani
,
R.
, and
Gogia
,
A.
,
2009
, “
Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review
,”
Prog. Mater. Sci.
,
54
(
3
), pp.
397
425
.
3.
Hojo
,
Y.
,
Kotani
,
Y.
,
Ito
,
M.
,
Abumi
,
K.
,
Kadosawa
,
T.
,
Shikinami
,
Y.
, and
Minami
,
A.
,
2005
, “
A Biomechanical and Histological Evaluation of a Bioresorbable Lumbar Interbody Fusion Cage
,”
Biomaterials
,
26
(
15
), pp.
2643
2651
.
4.
Martz
,
E. O.
,
Goel
,
V. K.
,
Pope
,
M. H.
, and
Park
,
J. B.
,
1997
, “
Materials and Design of Spinal Implants—A Review
,”
J. Biomed. Mater. Res. Part A
,
38
(
3
), pp.
267
288
.
5.
van Dijk
,
M.
,
Smit
,
T. H.
,
Sugihara
,
S.
,
Burger
,
E. H.
, and
Wuisman
,
P. I.
,
2002
, “
The Effect of Cage Stiffness on the Rate of Lumbar Interbody Fusion: An In Vivo Model Using Poly (l-Lactic Acid) and Titanium Cages
,”
Spine
,
27
(
7
), pp.
682
688
.
6.
McAfee
,
P. C.
,
Cunningham
,
B. W.
,
Lee
,
G. A.
,
Orbegoso
,
C. M.
,
Haggerty
,
C. J.
,
Fedder
,
I. L.
, and
Griffith
,
S. L.
,
1999
, “
Revision Strategies for Salvaging or Improving Failed Cylindrical Cages
,”
Spine
,
24
(
20
), pp.
2147
2153
.
7.
Tullberg
,
T.
,
1998
, “
Failure of a Carbon Fiber Implant: A Case Report
,”
Spine
,
23
(
16
), pp.
1804
1806
.
8.
He
,
S.
,
Timmer
,
M.
,
Yaszemski
,
M. J.
,
Yasko
,
A.
,
Engel
,
P.
, and
Mikos
,
A.
,
2001
, “
Synthesis of Biodegradable Poly (Propylene Fumarate) Networks With Poly (Propylene Fumarate)-Diacrylate Macromers as Crosslinking Agents and Characterization of Their Degradation Products
,”
Polymer
,
42
(
3
), pp.
1251
1260
.
9.
Yaszemski
,
M. J.
,
Payne
,
R. G.
,
Hayes
,
W. C.
,
Langer
,
R.
, and
Mikos
,
A. G.
,
1996
, “
In Vitro Degradation of a Poly (Propylene Fumarate)-Based Composite Material
,”
Biomaterials
,
17
(
22
), pp.
2127
2130
.
10.
Wei
,
G.
, and
Ma
,
P. X.
,
2004
, “
Structure and Properties of Nano-Hydroxyapatite/Polymer Composite Scaffolds for Bone Tissue Engineering
,”
Biomaterials
,
25
(
19
), pp.
4749
4757
.
11.
Woodard
,
J. R.
,
Hilldore
,
A. J.
,
Lan
,
S. K.
,
Park
,
C.
,
Morgan
,
A. W.
,
Eurell
,
J. A. C.
,
Clark
,
S. G.
,
Wheeler
,
M. B.
,
Jamison
,
R. D.
, and
Johnson
,
A. J. W.
,
2007
, “
The Mechanical Properties and Osteoconductivity of Hydroxyapatite Bone Scaffolds With Multi-Scale Porosity
,”
Biomaterials
,
28
(
1
), pp.
45
54
.
12.
Wang
,
S.
,
Lu
,
L.
,
Gruetzmacher
,
J. A.
,
Currier
,
B. L.
, and
Yaszemski
,
M. J.
,
2005
, “
A Biodegradable and Cross-Linkable Multiblock Copolymer Consisting of Poly (Propylene Fumarate) and Poly (ε-Caprolactone): Synthesis, Characterization, and Physical Properties
,”
Macromolecules
,
38
(
17
), pp.
7358
7370
.
13.
Fisher
,
J. P.
,
Dean
,
D.
, and
Mikos
,
A. G.
,
2002
, “
Photocrosslinking Characteristics and Mechanical Properties of Diethyl Fumarate/Poly (Propylene Fumarate) Biomaterials
,”
Biomaterials
,
23
(
22
), pp.
4333
4343
.
14.
Weissgerber
,
T. L.
,
Milic
,
N. M.
,
Winham
,
S. J.
, and
Garovic
,
V. D.
,
2015
, “
Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm
,”
PLoS Biol
,
13
(
4
), p.
e1002128
.
15.
Kanayama
,
M.
,
Cunningham
,
B. W.
,
Haggerty
,
C. J.
,
Abumi
,
K.
,
Kaneda
,
K.
, and
McAfee
,
P. C.
,
2000
, “
In Vitro Biomechanical Investigation of the Stability and Stress-Shielding Effect of Lumbar Interbody Fusion Devices
,”
J. Neurosurg.: Spine
,
93
(
2
), pp.
259
265
.
16.
Kurtz
,
S. M.
, and
Devine
,
J. N.
,
2007
, “
PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants
,”
Biomaterials
,
28
(
32
), pp.
4845
4869
.
17.
Olivares-Navarrete
,
R.
,
Gittens
,
R. A.
,
Schneider
,
J. M.
,
Hyzy
,
S. L.
,
Haithcock
,
D. A.
,
Ullrich
,
P. F.
,
Schwartz
,
Z.
, and
Boyan
,
B. D.
,
2012
, “
Osteoblasts Exhibit a More Differentiated Phenotype and Increased Bone Morphogenetic Protein Production on Titanium Alloy Substrates Than on Poly-Ether-Ether-Ketone
,”
Spine J.
,
12
(
3
), pp.
265
272
.
18.
Timmer
,
M. D.
,
Ambrose
,
C. G.
, and
Mikos
,
A. G.
,
2003
, “
In Vitro Degradation of Polymeric Networks of Poly(Propylene Fumarate) and the Crosslinking Macromer Poly(Propylene Fumarate)-Diacrylate
,”
Biomaterials
,
24
(
4
), pp.
571
577
.
19.
Hollinger
,
J. O.
,
2011
,
An Introduction to Biomaterials
, 2nd ed.,
CRC Press
, Boca Raton, FL.
20.
Fisher
,
J. P.
,
Vehof
,
J. W.
,
Dean
,
D.
,
van der Waerden
,
J. P.
,
Holland
,
T. A.
,
Mikos
,
A. G.
, and
Jansen
,
J. A.
,
2002
, “
Soft and Hard Tissue Response to Photocrosslinked Poly (Propylene Fumarate) Scaffolds in a Rabbit Model
,”
J. Biomed. Mater. Res. Part A
,
59
(
3
), pp.
547
556
.
21.
Lewandrowski
,
K. U.
,
Bondre
,
S. P.
,
Wise
,
D. L.
, and
Trantolo
,
D. J.
,
2003
, “
Enhanced Bioactivity of a Poly (Propylene Fumarate) Bone Graft Substitute by Augmentation With Nano‐Hydroxyapatite
,”
Bio-Med. Mater. Eng.
,
13
(
2
), pp.
115
124
.https://content.iospress.com/articles/bio-medical-materials-and-engineering/bme246
22.
Lee
,
J. W.
,
Ahn
,
G.
,
Kim
,
D. S.
, and
Cho
,
D.-W.
,
2009
, “
Development of Nano-and Microscale Composite 3D Scaffolds Using PPF/DEF-HA and Micro-Stereolithography
,”
Microelectron. Eng.
,
86
(
4–6
), pp.
1465
1467
.
23.
Przybyla
,
A. S.
,
Skrzypiec
,
D.
,
Pollintine
,
P.
,
Dolan
,
P.
, and
Adams
,
M. A.
,
2007
, “
Strength of the Cervical Spine in Compression and Bending
,”
Spine (Phila Pa 1976)
,
32
(
15
), pp.
1612
1620
.
24.
White
,
A. A.
, and
Panjabi
,
M. M.
,
1990
,
Clinical Biomechanics of the Spine
,
Lippincott
,
Philadelphia, PA
.
25.
Brennan
,
O.
,
Kennedy
,
O. D.
,
Lee
,
T. C.
,
Rackard
,
S. M.
, and
O'Brien
,
F. J.
,
2009
, “
Biomechanical Properties Across Trabeculae From the Proximal Femur of Normal and Ovariectomised Sheep
,”
J. Biomech.
,
42
(
4
), pp.
498
503
.
26.
Giambini
,
H.
,
Wang
,
H. J.
,
Zhao
,
C.
,
Chen
,
Q.
,
Nassr
,
A.
, and
An
,
K. N.
,
2013
, “
Anterior and Posterior Variations in Mechanical Properties of Human Vertebrae Measured by Nanoindentation
,”
J. Biomech.
,
46
(
3
), pp.
456
461
.
27.
Lai
,
Y. S.
,
Chen
,
W. C.
,
Huang
,
C. H.
,
Cheng
,
C. K.
,
Chan
,
K. K.
, and
Chang
,
T. K.
,
2015
, “
The Effect of Graft Strength on Knee Laxity and Graft In-Situ Forces After Posterior Cruciate Ligament Reconstruction
,”
PLoS One
,
10
(
5
), p.
e0127293
.
You do not currently have access to this content.