Endothelial cell (EC) morphology and functions can be highly impacted by the mechanical stresses that the cells experience in vivo. In most areas in the vasculature, ECs are continuously exposed to unsteady blood flow-induced shear stress and vasodilation-contraction-induced tensile stress/strain simultaneously. Investigations on how ECs respond to combined shear stress and tensile strain will help us to better understand how an altered mechanical environment affects EC mechanotransduction, dysfunction, and associated cardiovascular disease development. In the present study, a programmable shearing and stretching device that can apply dynamic fluid shear stress and cyclic tensile strain simultaneously to cultured ECs was developed. Flow and stress/strain conditions in the device were simulated using a fluid structure interaction (FSI) model. To characterize the performance of this device and the effect of combined shear stress–tensile strain on EC morphology, human coronary artery ECs (HCAECs) were exposed to concurrent shear stress and cyclic tensile strain in the device. Changes in EC morphology were evaluated through cell elongation, cell alignment, and cell junctional actin accumulation. Results obtained from the numerical simulation indicated that in the “in-plane” area of the device, both fluid shear stress and biaxial tensile strain were uniform. Results obtained from the in vitro experiments demonstrated that shear stress, alone or combined with cyclic tensile strain, induced significant cell elongation. While biaxial tensile strain alone did not induce any appreciable change in EC elongation. Fluid shear stress and cyclic tensile strain had different effects on EC actin filament alignment and accumulation. By combining various fluid shear stress and cyclic tensile strain conditions, this device can provide a physiologically relevant mechanical environment to study EC responses to physiological and pathological mechanical stimulation.

References

1.
Cunningham
,
K. S.
, and
Gotlieb
,
A. I.
,
2004
, “
The Role of Shear Stress in the Pathogenesis of Atherosclerosis
,”
Lab. Invest.
,
85
(
1
), pp.
9
23
.
2.
Chiu
,
J.-J.
,
Usami
,
S.
, and
Chien
,
S.
,
2009
, “
Vascular Endothelial Responses to Altered Shear Stress: Pathologic Implications for Atherosclerosis
,”
Ann. Med.
,
41
(
1
), pp.
19
28
.
3.
Alexander
,
R. W.
,
1995
, “
Hypertension and the Pathogenesis of Atherosclerosis Oxidative Stress and the Mediation of Arterial Inflammatory Response: A New Perspective
,”
Hypertension
,
25
(
2
), pp.
155
161
.
4.
Frangos
,
S. G.
,
Gahtan
,
V.
, and
Sumpio
,
B.
,
1999
, “
Localization of Atherosclerosis: Role of Hemodynamics
,”
Arch. Surg.
,
134
(
10
), pp.
1142
1149
.
5.
Dewey
,
C. F.
, Jr.
,
Bussolari
,
S. R.
,
Gimbrone
,
M. A.
, Jr.
, and
Davies
,
P. F.
,
1981
, “
The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress
,”
ASME J. Biomech. Eng.
,
103
(
3
), pp.
177
185
.
6.
Hunt
,
B. J.
, and
Jurd
,
K. M.
,
1998
, “
Endothelial Cell Activation. A Central Pathophysiological Process
,”
BMJ
,
316
(
7141
), pp.
1328
1329
.
7.
Sipkema
,
P.
,
van der Linden
,
P. J.
,
Westerhof
,
N.
, and
Yin
,
F. C.
,
2003
, “
Effect of Cyclic Axial Stretch of Rat Arteries on Endothelial Cytoskeletal Morphology and Vascular Reactivity
,”
J. Biomech.
,
36
(
5
), pp.
653
659
.
8.
Barron
,
V.
,
Brougham
,
C.
,
Coghlan
,
K.
,
McLucas
,
E.
,
O'Mahoney
,
D.
,
Stenson-Cox
,
C.
, and
McHugh
,
P. E.
,
2007
, “
The Effect of Physiological Cyclic Stretch on the Cell Morphology, Cell Orientation and Protein Expression of Endothelial Cells
,”
J. Mater. Sci. Mater. Med.
,
18
(
10
), pp.
1973
1981
.
9.
Michel
,
J. B.
,
2003
, “
Anoikis in the Cardiovascular System: Known and Unknown Extracellular Mediators
,”
Arterioscler., Thromb., Vasc. Biol.
,
23
(
12
), pp.
2146
2154
.
10.
Lacolley
,
P.
,
Challande
,
P.
,
Boumaza
,
S.
,
Cohuet
,
G.
,
Laurent
,
S.
,
Boutouyrie
,
P.
,
Grimaud
,
J. A.
,
Paulin
,
D.
,
Lamaziere
,
J. M.
, and
Li
,
Z.
,
2001
, “
Mechanical Properties and Structure of Carotid Arteries in Mice Lacking Desmin
,”
Cardiovas. Res.
,
51
(
1
), pp.
178
187
.
11.
Korff
,
T.
,
Aufgebauer
,
K.
, and
Hecker
,
M.
,
2007
, “
Cyclic Stretch Controls the Expression of CD40 in Endothelial Cells by Changing Their Transforming Growth Factor-Beta1 Response
,”
Circulation
,
116
(
20
), pp.
2288
2297
.
12.
Benbrahim
,
A.
,
L'Italien
,
G. J.
,
Kwolek
,
C. J.
,
Petersen
,
M. J.
,
Milinazzo
,
B.
,
Gertler
,
J. P.
,
Abbott
,
W. M.
, and
Orkin
,
R. W.
,
1996
, “
Characteristics of Vascular Wall Cells Subjected to Dynamic Cyclic Strain and Fluid Shear Conditions In Vitro
,”
J. Surg. Res.
,
65
(
2
), pp.
119
127
.
13.
Peng
,
X.
,
Recchia
,
F. A.
,
Byrne
,
B. J.
,
Wittstein
,
I. S.
,
Ziegelstein
,
R. C.
, and
Kass
,
D. A.
,
2000
, “
In Vitro System to Study Realistic Pulsatile Flow and Stretch Signaling in Cultured Vascular Cells
,”
Am. J. Physiol. Cell Physiol.
,
279
(
3
), pp.
C797
C805
.
14.
Zhao
,
S.
,
Suciu
,
A.
,
Ziegler
,
T.
,
Moore
,
J. E.
,
Bürki
,
E.
,
Meister
,
J.-J.
, and
Brunner
,
H. R.
,
1995
, “
Synergistic Effects of Fluid Shear Stress and Cyclic Circumferential Stretch on Vascular Endothelial Cell Morphology and Cytoskeleton
,”
Arterioscler., Thromb., Vasc. Biol.
,
15
(
10
), pp.
1781
1786
.
15.
Benbrahim
,
A.
,
L'Italien
,
G. J.
,
Milinazzo
,
B. B.
,
Warnock
,
D. F.
,
Dhara
,
S.
,
Gertler
,
J. P.
,
Orkin
,
R. W.
, and
Abbott
,
W. M.
,
1994
, “
A Compliant Tubular Device to Study the Influences of Wall Strain and Fluid Shear Stress on Cells of the Vascular Wall
,”
J. Vasc. Surg.
,
20
(
2
), pp.
184
194
.
16.
Azuma
,
N.
,
Duzgun
,
S. A.
,
Ikeda
,
M.
,
Kito
,
H.
,
Akasaka
,
N.
,
Sasajima
,
T.
, and
Sumpio
,
B. E.
,
2000
, “
Endothelial Cell Response to Different Mechanical Forces
,”
J. Vasc. Surg.
,
32
(
4
), pp.
789
794
.
17.
Moore
,
J. E.
, Jr.
,
Bürki
,
E.
,
Suciu
,
A.
,
Zhao
,
S.
,
Burnier
,
M.
,
Brunner
,
H. R.
, and
Meister
,
J.-J.
,
1994
, “
A Device for Subjecting Vascular Endothelial Cells to Both Fluid Shear Stress and Circumferential Cyclic Stretch
,”
Ann. Biomed. Eng.
,
22
(
4
), pp.
416
422
.
18.
Ives
,
C.
,
Eskin
,
S.
, and
McIntire
,
L.
,
1986
, “
Mechanical Effects on Endothelial Cell Morphology: In Vitro Assessment
,”
In Vitro Cell. Dev. Biol.
,
22
(
9
), pp.
500
507
.
19.
Tarbell
,
Y. Q. J. M.
,
2000
, “
Interaction Between Wall Shear Stress and Circumferential Strain Affects Endothelial Cell Biochemical Production
,”
J. Vasc. Res.
,
37
(
3
), pp.
147
157
.
20.
Berardi
,
D. E.
, and
Tarbell
,
J. M.
,
2009
, “
Stretch and Shear Interactions Affect Intercellular Junction Protein Expression and Turnover in Endothelial Cells
,”
Cell. Mol. Bioeng.
,
2
(
3
), pp.
320
331
.
21.
Toda
,
M.
,
Yamamoto
,
K.
,
Shimizu
,
N.
,
Obi
,
S.
,
Kumagaya
,
S.
,
Igarashi
,
T.
,
Kamiya
,
A.
, and
Ando
,
J.
,
2008
, “
Differential Gene Responses in Endothelial Cells Exposed to a Combination of Shear Stress and Cyclic Stretch
,”
J. Biotechnol.
,
133
(
2
), pp.
239
244
.
22.
Estrada
,
R.
,
Giridharan
,
G. A.
,
Nguyen
,
M. D.
,
Roussel
,
T. J.
,
Shakeri
,
M.
,
Parichehreh
,
V.
,
Prabhu
,
S. D.
, and
Sethu
,
P.
,
2011
, “
Endothelial Cell Culture Model for Replication of Physiological Profiles of Pressure, Flow, Stretch, and Shear Stress In Vitro
,”
Anal. Chem.
,
83
(
8
), pp.
3170
3177
.
23.
Van Dyke
,
W. S.
,
Sun
,
X.
,
Richard
,
A. B.
,
Nauman
,
E. A.
, and
Akkus
,
O.
,
2012
, “
Novel Mechanical Bioreactor for Concomitant Fluid Shear Stress and Substrate Strain
,”
J. Biomech.
,
45
(
7
), pp.
1323
1327
.
24.
Maeda
,
E.
,
Hagiwara
,
Y.
,
Wang
,
J. H.
, and
Ohashi
,
T.
,
2013
, “
A New Experimental System for Simultaneous Application of Cyclic Tensile Strain and Fluid Shear Stress to Tenocytes In Vitro
,”
Biomed. Microdevices
,
15
(
6
), pp.
1067
1075
.
25.
Breen
,
L. T.
,
McHugh
,
P. E.
,
McCormack
,
B. A.
,
Muir
,
G.
,
Quinlan
,
N. J.
,
Heraty
,
K. B.
, and
Murphy
,
B. P.
,
2006
, “
Development of a Novel Bioreactor to Apply Shear Stress and Tensile Strain Simultaneously to Cell Monolayers
,”
Rev. Sci. Instrum.
,
77
(
10
), p.
104301
.
26.
Owatverot
,
T. B.
,
Oswald
,
S. J.
,
Chen
,
Y.
,
Wille
,
J. J.
, and
Yin
,
F. C.
,
2005
, “
Effect of Combined Cyclic Stretch and Fluid Shear Stress on Endothelial Cell Morphological Responses
,”
ASME J. Biomech. Eng.
,
127
(
3
), pp.
374
382
.
27.
Thacher
,
T. N.
,
Silacci
,
P.
,
Stergiopulos
,
N.
, and
da Silva
,
R. F.
,
2010
, “
Autonomous Effects of Shear Stress and Cyclic Circumferential Stretch Regarding Endothelial Dysfunction and Oxidative Stress: An Ex Vivo Arterial Model
,”
J. Vasc. Res.
,
47
(
4
), pp.
336
345
.
28.
Yin
,
W.
, and
Rubenstein
,
D.
,
2009
, “
Dose Effect of Shear Stress on Platelet Complement Activation in a Cone and Plate Shearing Device
,”
Cell. Mol. Bioeng.
,
2
(
2
), pp.
274
280
.
29.
Banes
,
A. J.
,
Gilbert
,
J.
,
Taylor
,
D.
, and
Monbureau
,
O.
,
1985
, “
A New Vacuum-Operated Stress-Providing Instrument That Applies Static or Variable Duration Cyclic Tension or Compression to Cells In Vitro
,”
J. Cell Sci.
,
75
, pp.
35
42
.
30.
Vande Geest
,
J. P.
,
Di Martino
,
E. S.
, and
Vorp
,
D. A.
,
2004
, “
An Analysis of the Complete Strain Field Within Flexercell Membranes
,”
J. Biomech.
,
37
(
12
), pp.
1923
1928
.
31.
Ethier
,
C. R.
, and
Simmons
,
C. A.
,
2007
, “
Cellular Biomechanics
,”
Introductory Biomechanics: From Cells to Organisms
,
Cambridge University Press
,
New York
, pp.
82
86
.
32.
Blackman
,
B. R.
,
Barbee
,
K. A.
, and
Thibault
,
L. E.
,
2000
, “
In Vitro Cell Shearing Device to Investigate the Dynamic Response of Cells in a Controlled Hydrodynamic Environment
,”
Ann. Biomed. Eng.
,
28
(
4
), pp.
363
372
.
33.
Yin
,
W.
,
Shanmugavelayudam
,
S. K.
, and
Rubenstein
,
D. A.
,
2011
, “
The Effect of Physiologically Relevant Dynamic Shear Stress on Platelet and Endothelial Cell Activation
,”
Thromb. Res.
,
127
(
3
), pp.
235
241
.
34.
Fung
,
Y. C.
,
1977
,
A First Course in Continuum Mechanics
,
Prentice-Hall,
Englewood Cliffs, NJ
.
35.
Maria
,
Z.
,
Yin
,
W.
, and
Rubenstein
,
D. A.
,
2014
, “
Combined Effects of Physiologically Relevant Disturbed Wall Shear Stress and Glycated Albumin on Endothelial Cell Functions Associated With Inflammation, Thrombosis and Cytoskeletal Dynamics
,”
J. Diabetes Invest.
,
5
(
4
), pp.
372
381
.
36.
Ng
,
C. P.
,
Hinz
,
B.
, and
Swartz
,
M. A.
,
2005
, “
Interstitial Fluid Flow Induces Myofibroblast Differentiation and Collagen Alignment In Vitro
,”
J. Cell Sci.
,
118
(
20
), pp.
4731
4739
.
37.
Sternberg
,
S. R.
,
1983
, “
Biomedical Image Processing
,”
Computer
,
16
(
1
), pp.
22
34
.
38.
Zhang
,
J.
,
Betson
,
M.
,
Erasmus
,
J.
,
Zeikos
,
K.
,
Bailly
,
M.
,
Cramer
,
L. P.
, and
Braga
,
V. M.
,
2005
, “
Actin at Cell-Cell Junctions Is Composed of Two Dynamic and Functional Populations
,”
J. Cell Sci.
,
118
(
Pt 23
), pp.
5549
5562
.
39.
Caille
,
N.
,
Thoumine
,
O.
,
Tardy
,
Y.
, and
Meister
,
J. J.
,
2002
, “
Contribution of the Nucleus to the Mechanical Properties of Endothelial Cells
,”
J. Biomech.
,
35
(
2
), pp.
177
187
.
40.
Martinelli
,
R.
,
Zeiger
,
A. S.
,
Whitfield
,
M.
,
Sciuto
,
T. E.
,
Dvorak
,
A.
,
Van Vliet
,
K. J.
,
Greenwood
,
J.
, and
Carman
,
C. V.
,
2014
, “
Probing the Biomechanical Contribution of the Endothelium to Lymphocyte Migration: Diapedesis by the Path of Least Resistance
,”
J. Cell Sci.
,
127
(
Pt 17
), pp.
3720
3734
.
41.
Tojkander
,
S.
,
Gateva
,
G.
, and
Lappalainen
,
P.
,
2012
, “
Actin Stress Fibers—Assembly, Dynamics and Biological Roles
,”
J. Cell Sci.
,
125
(
Pt 8
), pp.
1855
1864
.
42.
Liu
,
Z.
,
Tan
,
J. L.
,
Cohen
,
D. M.
,
Yang
,
M. T.
,
Sniadecki
,
N. J.
,
Ruiz
,
S. A.
,
Nelson
,
C. M.
, and
Chen
,
C. S.
,
2010
, “
Mechanical Tugging Force Regulates the Size of Cell-Cell Junctions
,”
Proc. Natl. Acad. Sci. U.S.A.
,
107
(
22
), pp.
9944
9949
.
43.
Chen
,
C. S.
,
Tan
,
J.
, and
Tien
,
J.
,
2004
, “
Mechanotransduction at Cell-Matrix and Cell-Cell Contacts
,”
Annu. Rev. Biomed. Eng.
,
6
(
1
), pp.
275
302
.
44.
Chatzizisis
,
Y. S.
,
Coskun
,
A. U.
,
Jonas
,
M.
,
Edelman
,
E. R.
,
Feldman
,
C. L.
, and
Stone
,
P. H.
,
2007
, “
Role of Endothelial Shear Stress in the Natural History of Coronary Atherosclerosis and Vascular Remodeling: Molecular, Cellular, and Vascular Behavior
,”
J. Am. Coll. Cardiol.
,
49
(
25
), pp.
2379
2393
.
45.
Maalej
,
N.
, and
Folts
,
J. D.
,
1996
, “
Increased Shear Stress Overcomes the Antithrombotic Platelet Inhibitory Effect of Aspirin in Stenosed Dog Coronary Arteries
,”
Circulation
,
93
(
6
), pp.
1201
1205
.
46.
Hasan
,
M.
,
Rubenstein
,
D. A.
, and
Yin
,
W.
,
2013
, “
Effects of Cyclic Motion on Coronary Blood Flow
,”
ASME J. Biomech. Eng.
,
135
(
12
), p.
121002
.
47.
Zhao
,
S.
,
Suciu
,
A.
,
Ziegler
,
T.
,
Moore
,
J. E.
, Jr.
,
Burki
,
E.
,
Meister
,
J. J.
, and
Brunner
,
H. R.
,
1995
, “
Synergistic Effects of Fluid Shear Stress and Cyclic Circumferential Stretch on Vascular Endothelial Cell Morphology and Cytoskeleton
,”
Arterioscler., Thromb., Vasc. Biol.
,
15
(
10
), pp.
1781
1786
.
48.
Chien
,
S.
,
2007
, “
Mechanotransduction and Endothelial Cell Homeostasis: The Wisdom of the Cell
,”
Am. J. Physiol. Heart Circ. Physiol.
,
292
(
3
), pp.
H1209
1224
.
49.
Levesque
,
M. J.
, and
Nerem
,
R. M.
,
1985
, “
The Elongation and Orientation of Cultured Endothelial Cells in Response to Shear Stress
,”
ASME J. Biomech. Eng.
,
107
(
4
), pp.
341
347
.
50.
Potter
,
C. M.
,
Schobesberger
,
S.
,
Lundberg
,
M. H.
,
Weinberg
,
P. D.
,
Mitchell
,
J. A.
, and
Gorelik
,
J.
,
2012
, “
Shape and Compliance of Endothelial Cells After Shear Stress In Vitro or From Different Aortic Regions: Scanning Ion Conductance Microscopy Study
,”
PloS One
,
7
(
2
), p.
e31228
.
51.
Levesque
,
M. J.
,
Liepsch
,
D.
,
Moravec
,
S.
, and
Nerem
,
R. M.
,
1986
, “
Correlation of Endothelial Cell Shape and Wall Shear Stress in a Stenosed Dog Aorta
,”
Arteriosclerosis
,
6
(
2
), pp.
220
229
.
52.
Ohashi
,
T.
, and
Sato
,
M.
,
2005
, “
Remodeling of Vascular Endothelial Cells Exposed to Fluid Shear Stress: Experimental and Numerical Approach
,”
Fluid Dyn. Res.
,
37
(
1
), pp.
40
59
.
53.
Wang
,
J. H.-C.
,
Goldschmidt-Clermont
,
P.
,
Wille
,
J.
, and
Yin
,
F. C.-P.
,
2001
, “
Specificity of Endothelial Cell Reorientation in Response to Cyclic Mechanical Stretching
,”
J. Biomech.
,
34
(
12
), pp.
1563
1572
.
You do not currently have access to this content.