In addition to their obvious biological roles in tissue function, cells often play a significant mechanical role through a combination of passive and active behaviors. This study focused on the passive mechanical contribution of cells in tissues by improving our multiscale model via the addition of cells, which were treated as dilute spherical inclusions. The first set of simulations considered a rigid cell, with the surrounding ECM modeled as (1) linear elastic, (2) Neo-Hookean, and (3) a fiber network. Comparison with the classical composite theory for rigid inclusions showed close agreement at low cell volume fraction. The fiber network case exhibited nonlinear stress–strain behavior and Poisson's ratios larger than the elastic limit of 0.5, characteristics similar to those of biological tissues. The second set of simulations used a fiber network for both the cell (simulating cytoskeletal filaments) and matrix, and investigated the effect of varying relative stiffness between the cell and matrix, as well as the effect of a cytoplasmic pressure to enforce incompressibility of the cell. Results showed that the ECM network exerted negligible compression on the cell, even when the stiffness of fibers in the network was increased relative to the cell. Introduction of a cytoplasmic pressure significantly increased the stresses in the cell filament network, and altered how the cell changed its shape under tension. Findings from this study have implications on understanding how cells interact with their surrounding ECM, as well as in the context of mechanosensation.

References

1.
Fung
,
Y. C.
,
1967
, “
Elasticity of Soft Tissues in Simple Elongation
,”
Am. J. Physiol.
,
213
(
6
), pp.
1532
1544
.
2.
Humphrey
,
J. D.
,
2003
, “
Review Paper: Continuum Biomechanics of Soft Biological Tissues
,”
Proc. R. Soc. Lond. A
,
459
(
2029
), pp.
3
46
.10.1098/rspa.2002.1060
3.
Humphrey
,
J. D.
, and
Yin
,
F. C.
,
1989
, “
Constitutive Relations and Finite Deformations of Passive Cardiac Tissue II: Stress Analysis in the Left Ventricle
,”
Circ. Res.
,
65
(
3
), pp.
805
817
.10.1161/01.RES.65.3.805
4.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
5.
Hu
,
J.-J.
,
Baek
,
S.
, and
Humphrey
,
J. D.
,
2007
, “
Stress–Strain Behavior of the Passive Basilar Artery in Normotension and Hypertension
,”
J. Biomech.
,
40
(
11
), pp.
2559
2563
.10.1016/j.jbiomech.2006.11.007
6.
Wagner
,
H. P.
, and
Humphrey
,
J. D.
,
2011
, “
Differential Passive and Active Biaxial Mechanical Behaviors of Muscular and Elastic Arteries: Basilar Versus Common Carotid
,”
ASME, J. Biomech. Eng.
,
133
(
5
), p.
051009
.10.1115/1.4003873
7.
Zahalak
,
G. I.
,
Wagenseil
,
J. E.
,
Wakatsuki
,
T.
, and
Elson
,
E. L.
,
2000
, “
A Cell-Based Constitutive Relation for Bio-Artificial Tissues
,”
Biophys. J.
,
79
(
5
), pp.
2369
2381
.10.1016/S0006-3495(00)76482-4
8.
Marquez
,
J. P.
,
Genin
,
G. M.
,
Zahalak
,
G. I.
, and
Elson
,
E. L.
,
2005
, “
The Relationship Between Cell and Tissue Strain in Three-Dimensional Bio-Artificial Tissues
,”
Biophys. J.
,
88
(
2
), pp.
778
789
.10.1529/biophysj.104.041947
9.
Marquez
,
J. P.
,
Genin
,
G. M.
,
Zahalak
,
G. I.
, and
Elson
,
E. L.
,
2005
, “
Thin Bio-Artificial Tissues in Plane Stress: The Relationship between Cell and Tissue Strain, and an Improved Constitutive Model
,”
Biophys. J.
,
88
(
2
), pp.
765
777
.10.1529/biophysj.104.040808
10.
Barocas
,
V. H.
, and
Tranquillo
,
R. T.
,
1997
, “
An Anisotropic Biphasic Theory of Tissue-Equivalent Mechanics: The Interplay Among Cell Traction, Fibrillar Network Deformation, Fibril Alignment, and Cell Contact Guidance
,”
ASME, J. Biomech. Eng.
,
119
(
2
), pp.
137
145
.10.1115/1.2796072
11.
Stevenson
,
M. D.
,
Sieminski
,
A. L.
,
McLeod
,
C. M.
,
Byfield
,
F. J.
,
Barocas
,
V. H.
, and
Gooch
,
K. J.
,
2010
, “
Pericellular Conditions Regulate Extent of Cell-Mediated Compaction of Collagen Gels
,”
Biophys. J.
,
99
(
1
), pp.
19
28
.10.1016/j.bpj.2010.03.041
12.
Guilak
,
F.
, and
Mow
,
V. C.
,
2000
, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell–Matrix Interactions in Articular Cartilage
,”
J. Biomech.
,
33
(
12
), pp.
1663
1673
.10.1016/S0021-9290(00)00105-6
13.
Breuls
,
R. G. M.
,
Sengers
,
B. G.
,
Oomens
,
C. W. J.
,
Bouten
,
C. V. C.
, and
Baaijens
,
F. P. T.
,
2002
, “
Predicting Local Cell Deformations in Engineered Tissue Constructs: A Multilevel Finite Element Approach
,”
ASME, J. Biomech. Eng.
,
124
(
2
), pp.
198
207
.10.1115/1.1449492
14.
Stamenović
D.
,
Fredberg
,
J. J.
,
Wang
,
N.
,
Butler
,
J. P.
, and
Ingber
,
D. E.
,
1996
, “
A Microstructural Approach to Cytoskeletal Mechanics Based on Tensegrity
,”
J. Theor. Biol.
,
181
(
2
), pp.
125
136
.10.1006/jtbi.1996.0120
15.
Wang
,
N.
,
Naruse
,
K.
,
Stamenović
,
D.
,
Fredberg
,
J. J.
,
Mijailovich
,
S. M.
,
Tolić-Nørrelykke
,
I. M.
,
Polte
,
T.
,
Mannix
,
R.
, and
Ingber
,
D. E.
,
2001
, “
Mechanical Behavior in Living Cells Consistent With the Tensegrity Model
,”
Proc. Natl. Acad. Sci.
,
98
(
14
), pp.
7765
7770
.10.1073/pnas.141199598
16.
Coughlin
,
M. F.
, and
Stamenović
,
D.
,
1998
, “
A Tensegrity Model of the Cytoskeleton in Spread and Round Cells
,”
ASME, J. Biomech. Eng.
,
120
(
6
), pp.
770
777
.10.1115/1.2834892
17.
Stamenović
,
D.
, and
Coughlin
,
M. F.
,
2000
, “
A Quantitative Model of Cellular Elasticity Based on Tensegrity
,”
ASME, J. Biomech. Eng.
,
122
(
1
), pp.
39
43
.10.1115/1.429631
18.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
New York
.
19.
Satcher
,
R. L.
, Jr.
, and
Dewey
,
C. F.
, Jr.
,
1996
, “
Theoretical Estimates of Mechanical Properties of the Endothelial Cell Cytoskeleton
,”
Biophys. J.
,
71
(
1
), pp.
109
118
.10.1016/S0006-3495(96)79206-8
20.
Susilo
,
M. E.
,
Roeder
,
B. A.
,
Voytik-Harbin
,
S. L.
,
Kokini
,
K.
, and
Nauman
,
E. A.
,
2010
, “
Development of a Three-Dimensional Unit Cell to Model the Micromechanical Response of a Collagen-Based Extracellular Matrix
,”
Acta Biomater.
,
6
(
4
), pp.
1471
1486
.10.1016/j.actbio.2009.11.014
21.
Isambert
,
H.
, and
Maggs
,
A. C.
,
1996
, “
Dynamics and Rheology of Actin Solutions
,”
Macromolecules
,
29
(
3
), pp.
1036
1040
.10.1021/ma946418x
22.
Storm
,
C.
,
Pastore
,
J. J.
,
MacKintosh
,
F. C.
,
Lubensky
,
T. C.
, and
Janmey
,
P. A.
,
2005
, “
Nonlinear Elasticity in Biological Gels
,”
Nature
,
435
(
7039
), pp.
191
194
.10.1038/nature03521
23.
Palmer
,
J. S.
, and
Boyce
,
M. C.
,
2008
, “
Constitutive Modeling of the Stress–Strain Behavior of F-Actin Filament Networks
,”
Acta Biomater.
,
4
(
3
), pp.
597
612
.10.1016/j.actbio.2007.12.007
24.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
,
2007
, “
Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls
,”
ASME, J. Biomech. Eng.
,
129
(
4
), pp.
611
618
.10.1115/1.2746387
25.
Lake
,
S. P.
,
Hadi
,
M. F.
,
Lai
,
V. K.
, and
Barocas
,
V. H.
,
2012
, “
Mechanics of a Fiber Network Within a Non-Fibrillar Matrix: Model and Comparison With Collagen-Agarose Co-Gels
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2111
2121
.10.1007/s10439-012-0584-6
26.
Zhang
,
L.
,
Lake
,
S. P.
,
Lai
,
V. K.
,
Picu
,
C. R.
,
Barocas
,
V. H.
, and
Shephard
,
M. S.
,
2013
, “
A Coupled Fiber-Matrix Model Demonstrates Highly Inhomogeneous Microstructural Interactions in Soft Tissues Under Tensile Load
,”
ASME, J. Biomech. Eng.
,
135
(
1
), p.
011008
.10.1115/1.4023136
27.
Hadi
,
M. F.
,
Sander
,
E. A.
, and
Barocas
V. H.
,
2012
, “
Multiscale Model Predicts Tissue-Level Failure From Collagen Fiber-Level Damage
,”
ASME, J. Biomech. Eng.
,
134
(
9
), p.
091005
.10.1115/1.4007097
28.
Hashin
,
Z.
,
1962
, “
The Elastic Moduli of Heterogeneous Material
,”
J. Appl. Mech.
,
29
(
1
), pp.
143
150
.10.1115/1.3636446
29.
Chandran
,
P. L.
, and
Barocas
,
V. H.
,
2007
, “
Deterministic Material-Based Averaging Theory Model of Collagen Gel Micromechanics
,”
ASME, J. Biomech. Eng.
,
129
(
2
), pp.
137
147
.10.1115/1.2472369
30.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
,
2007
, “
Volume-Averaging Theory for the Study of the Mechanics of Collagen Networks
,”
Comput. Meth. Appl. Mech. Eng.
,
196
(
31–32
), pp.
2981
2990
.10.1016/j.cma.2006.06.019
31.
Fung
,
Y.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
,
New York
.
32.
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2000
, “
Biaxial Mechanical Properties of the Native and Glutaraldehyde-Treated Aortic Valve Cusp: Part II—A Structural Constitutive Model
,”
ASME, J. Biomech. Eng.
,
122
(
4
), pp.
327
335
.10.1115/1.1287158
33.
Evans
,
M. C.
, and
Barocas
,
V. H.
,
2009
, “
The Modulus of Fibroblast-Populated Collagen Gels is not Determined by Final Collagen and Cell Concentration: Experiments and an Inclusion-Based Model
,”
ASME, J. Biomech. Eng.
,
131
(
10
), p.
101014
.10.1115/1.4000064
34.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
New York
.
35.
Roy
,
S.
,
Silacci
,
P.
, and
Stergiopulos
,
N.
,
2005
, “
Biomechanical Properties of Decellularized Porcine Common Carotid Arteries
,”
Am. J. Physiol. Heart Circ. Physiol.
,
289
(
4
), pp.
H1567
H1576
.10.1152/ajpheart.00564.2004
36.
Lynch
,
H. A.
,
Johannessen
,
W.
,
Wu
,
J. P.
,
Jawa
,
A.
, and
Elliott
,
D. M.
,
2003
, “
Effect of Fiber Orientation and Strain Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon
,”
ASME, J. Biomech. Eng.
,
125
(
5
), pp.
726
731
.10.1115/1.1614819
37.
Lake
,
S. P.
,
Miller
,
K. S.
,
Elliott
,
D. M.
, and
Soslowsky
,
L. J.
,
2010
, “
Tensile Properties and Fiber Alignment of Human Supraspinatus Tendon in the Transverse Direction Demonstrate Inhomogeneity, Nonlinearity, and Regional Isotropy
,”
J. Biomech.
,
43
(
4
), pp.
727
732
.10.1016/j.jbiomech.2009.10.017
38.
Cheng
,
V. W. T.
, and
Screen
,
H. R. C.
,
2007
, “
The Micro-Structural Strain Response of Tendon
,”
J. Mater. Sci.
,
42
(
21
), pp.
8957
8965
.10.1007/s10853-007-1653-3
39.
Lai
,
V. K.
,
Frey
,
C. R.
,
Kerandi
,
A. M.
,
Lake
,
S. P.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2012
, “
Microstructural and Mechanical Differences Between Digested Collagen–Fibrin Co-Gels and Pure Collagen and Fibrin Gels
,”
Acta Biomater.
,
8
(
11
), pp.
4031
4042
.10.1016/j.actbio.2012.07.010
40.
Nachtrab
,
S.
,
Kapfer
,
S. C.
,
Arns
,
C. H.
,
Madadi
,
M.
,
Mecke
,
K.
, and
Schröder-Turk
,
G. E.
,
2011
, “
Morphology and Linear-Elastic Moduli of Random Network Solids
,”
Adv. Mater.
,
23
(
22–23
), pp.
2633
2637
.10.1002/adma.201004094
41.
Lai
,
V. K.
,
Lake
,
S. P.
,
Frey
,
C. R.
,
Tranquillo
,
R. T.
, and
Barocas
,
V. H.
,
2012
, “
Mechanical Behavior of Collagen-Fibrin Co-Gels Reflects Transition From Series to Parallel Interactions With Increasing Collagen Content
,”
ASME, J. Biomech. Eng.
,
134
(
1
), p.
011004
.10.1115/1.4005544
42.
Burridge
,
K.
,
Fath
,
K.
,
Kelly
,
T.
,
Nuckolls
,
G.
, and
Turner
,
C.
,
1988
, “
Focal Adhesions: Transmembrane Junctions Between the Extracellular Matrix and the Cytoskeleton
,”
Ann. Rev. Cell Biol.
,
4
(
1
), pp.
487
525
.10.1146/annurev.cb.04.110188.002415
43.
Goffin
,
J. M.
,
Pittet
,
P.
,
Csucs
,
G.
,
Lussi
,
J. W.
,
Meister
,
J.-J.
, and
Hinz
,
B.
,
2006
, “
Focal Adhesion Size Controls Tension-Dependent Recruitment of α-Smooth Muscle Actin to Stress Fibers
,”
J. Cell. Biol.
,
172
(
2
), pp.
259
268
.10.1083/jcb.200506179
44.
Durrant
,
L. A.
,
Archer
,
C. W.
,
Benjamin
,
M.
, and
Ralphs
,
J. R.
,
1999
, “
Organisation of the Chondrocyte Cytoskeleton and its Response to Changing Mechanical Conditions in Organ Culture
,”
J. Anat.
,
194
(
3
), pp.
343
353
.10.1046/j.1469-7580.1999.19430343.x
45.
Eggli
,
P. S.
,
Hunzinker
,
E. B.
, and
Schenk
,
R. K.
,
1988
, “
Quantitation of Structural Features Characterizing Weight- and Less-Weight-Bearing Regions in Articular Cartilage: A Stereological Analysis of Medical Femoral Condyles in Young Adult Rabbits
,”
Anat. Rec.
,
222
(
3
), pp.
217
227
.10.1002/ar.1092220302
46.
Janmey
,
P. A.
, and
McCulloch
,
C. A.
,
2007
, “
Cell Mechanics: Integrating Cell Responses to Mechanical Stimuli
,”
Ann. Rev. Biomed. Eng.
,
9
(
1
), pp.
1
34
.10.1146/annurev.bioeng.9.060906.151927
47.
Ofek
,
G.
,
Wiltz
,
D. C.
, and
Athanasiou
,
K. A.
,
2009
, “
Contribution of the Cytoskeleton to the Compressive Properties and Recovery Behavior of Single Cells
,”
Biophys. J.
,
97
(
7
), pp.
1873
1882
.10.1016/j.bpj.2009.07.050
48.
Eastwood
,
M.
,
Mudera
V. C.
,
Mcgrouther
D. A.
, and
Brown
,
R. A.
,
1998
, “
Effect of Precise Mechanical Loading on Fibroblast Populated Collagen Lattices: Morphological Changes
,”
Cell Motil. Cytoskel.
,
40
(
1
), pp.
13
21
.10.1002/(SICI)1097-0169(1998)40:1<13::AID-CM2>3.0.CO;2-G
49.
Huang
,
D.
,
Chang
,
T. R.
,
Aggarwal
,
A.
,
Lee
,
R. C.
, and
Ehrlich
,
H. P.
,
1993
, “
Mechanisms and Dynamics of Mechanical Strengthening in Ligament-Equivalent Fibroblast-Populated Collagen Matrices
,”
Ann. Biomed. Eng.
,
21
(
3
), pp.
289
305
.10.1007/BF02368184
50.
Chan
,
C. E.
, and
Odde
,
D. J.
,
2008
, “
Traction Dynamics of Filopodia on Compliant Substrates
,”
Science
,
322
(
5908
), pp.
1687
1691
.10.1126/science.1163595
51.
Yeung
,
T.
,
Georges
,
P. C.
,
Flanagan
,
L. A.
,
Marg
,
B.
,
Ortiz
,
M.
,
Funaki
,
M.
,
Zahir
,
N.
,
Ming
,
W.
,
Weaver
,
V.
, and
Janmey
,
P. A.
,
2005
, “
Effects of Substrate Stiffness on Cell Morphology, Cytoskeletal Structure, and Adhesion
,”
Cell Motil. Cytoskel.
,
60
(
1
), pp.
24
34
.10.1002/cm.20041
52.
Subramanian
,
A.
, and
Lin
,
H.-Y.
,
2005
, “
Crosslinked Chitosan: Its Physical Properties and the Effects of Matrix Stiffness on Chondrocyte Cell Morphology and Proliferation
,”
J. Biomed. Mater. Res. A
,
75A
(
3
), pp.
742
753
.10.1002/jbm.a.30489
53.
Engler
,
A. J.
,
Sen
,
S.
,
Sweeney
,
H. L.
, and
Discher
,
D. E.
,
2006
, “
Matrix Elasticity Directs Stem Cell Lineage Specification
,”
Cell
,
126
(
4
), pp.
677
689
.10.1016/j.cell.2006.06.044
54.
Hadjipanayi
,
E.
,
Mudera
,
V.
, and
Brown
,
R. A.
,
2009
, “
Guiding Cell Migration in 3D: A Collagen Matrix With Graded Directional Stiffness
,”
Cell Motil. Cytoskel.
,
66
(
3
), pp.
121
128
.10.1002/cm.20331
55.
Legant
,
W. R.
,
Miller
,
J. S.
,
Blakely
,
B. L.
,
Cohen
,
D. M.
,
Genin
,
G. M.
, and
Chen
,
C. S.
,
2010
, “
Measurement of Mechanical Tractions Exerted by Cells in Three-Dimensional Matrices
,”
Nature Methods
,
7
(
12
), pp.
969
971
.10.1038/nmeth.1531
56.
Pizzo
,
A. M.
,
Kokini
,
K.
,
Vaughn
,
L. C.
,
Waisner
,
B. Z.
, and
Voytik-Harbin
,
S. L.
,
2005
, “
Extracellular Matrix (ECM) Microstructural Composition Regulates Local Cell-ECM Biomechanics and Fundamental Fibroblast Behavior: A Multidimensional Perspective
,”
J. Appl. Physiol.
,
98
(
5
), pp.
1909
1921
.10.1152/japplphysiol.01137.2004
You do not currently have access to this content.