Most finite element models of atherosclerotic arteries do not account for the heterogeneity of the plaque constituents at the microscale. Failure of plaque lesions has been shown to be a local event, linked to stress concentrations caused by cap thinning, inflammation, macroscopic heterogeneity, and recently, the presence of microcalcifications. There is growing evidence that microcalcifications exist in the fibrous cap of plaque lesions. However, their role is not yet fully understood. The goal of the present work is to investigate the effects of localized regions of microcalcifications on the stress field of atherosclerotic plaque caps in a section of carotid artery. This is achieved by performing finite element simulations of three-dimensional fluid-structure interaction models. The material response in the region of microcalcification is modeled using a combination of finite elements, homogenization theory, and a stress concentration function that approximates the average local stresses in the fibrous tissue and microcalcification phases. The results indicate that the circumferential stress in the fibrous tissue phase increases as the volume fraction of microcalcifications is increased, and that the stress exceeds a critical threshold when the fibrous cap thickness is decreased. Furthermore, the presence of the microcalcifications significantly influences the distribution of stress by shifting the maximum circumferential stress away from the cap shoulders, where failure is most common when the effective region of microcalcification is located at the center of the cap. This is a possible explanation of why 40% of plaque ruptures occur away from the shoulder region of the cap.

1.
Mach
,
F.
, 2005, “
Inflammation is a Crucial Feature of Atherosclerosis and a Potential Target to Reduce Cardiovascular Events
,”
Atherosclerosis: Diet and Drugs
,
A.
v. Eckardstein
, ed.,
Springer-Verlag
,
Berlin
, pp.
697
722
.
2.
Dirksen
,
M. T.
,
van der Wal
,
A. C.
,
van den Berg
,
F. M.
,
van der Loos
,
C. M.
, and
Becker
,
A. E.
, 1998, “
Distribution of Inflammatory Cells in Atherosclerotic Plaques Relates to the Direction of Flow
,”
Circulation
0009-7322,
98
, pp.
2000
2003
.
3.
Lovett
,
J. K.
, and
Rothwell
,
P. M.
, 2003, “
Site of Carotid Plaque Ulceration in Relation to Direction of Blood Flow: An Angiographic and Pathological Study
,”
Cerebrovasc Dis.
1015-9770,
16
, pp.
369
375
.
4.
Newby
,
A. C.
, 2005, “
Dual Role of Matrix Metalloproteinases (Matrixins) in Intimal Thickening and Atherosclerotic Plaque Rupture
,”
Physiol. Rev.
0031-9333,
85
, pp.
1
31
.
5.
Kilpatrick
,
D.
,
Xu
,
C.
,
Vito
,
R.
, and
Glagov
,
S.
, 2002, “
Correlation of Mechanical Behavior and MMP-1 Presence in Human Atherosclerotic Plaque
,”
J. Mech. Med. Biol.
,
2
(
1
), pp.
1
7
.
6.
Groen
,
H. C.
,
Gijsen
,
J. H.
,
van der Lugt
,
A.
,
Ferguson
,
M. S.
,
Hatsukami
,
T. S.
,
van der Steen
,
A. F. W.
,
Yuan
,
C.
, and
Wentzel
,
J. J.
, 2007, “
Plaque Rupture in the Carotid Artery is Localized at the High Shear Stress Region
,”
Stroke
0039-2499,
38
, pp.
2379
2381
.
7.
Shah
,
P. K.
, 2007, “
Molecular Mechanisms of Plaque Instability
,”
Curr. Opin. Lipidol.
0957-9672,
18
, pp.
492
499
.
8.
Richardson
,
P. D.
,
Davies
,
M. J.
, and
Born
,
G. V. R.
, 1989, “
Influence of Plaque Configuration and Stress Distribution on Fissuring of Coronary Atherosclerotic Plaques
,”
Lancet
0140-6736,
334
, pp.
941
944
.
9.
Vengrenyuk
,
Y.
,
Carlier
,
S.
,
Xanthos
,
S.
,
Cardoso
,
L.
,
Ganatos
,
P.
,
Virmani
,
R.
,
Einav
,
S.
,
Gilchrist
,
L.
, and
Weinbaum
,
S.
, 2006, “
A Hypothesis for Vulnerable Plaque Rupture Due To Stress-Induced Debonding Around Cellular Microcalcification in Thin Fibrous Caps
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
103
, pp.
14678
14683
.
10.
Shanahan
,
C. M.
, 2007, “
Inflammation Ushers in Calcification, A Cycle of Damage and Protection?
,”
Circulation
0009-7322,
116
, pp.
2782
2785
.
11.
Phair
,
R. D.
, 1988, “
Cellular Calcium and Atherosclerosis: A Brief Review
,”
Cell Calcium
0143-4160,
9
, pp.
275
284
.
12.
Massaeli
,
H.
, and
Pierce
,
G. N.
, 1995, “
Involvement of Lipoproteins, Free Radicals and Calcium in Cardiovascular Disease Processes
,”
Cardiovasc Res.
,
29
, pp.
597
603
.
13.
Tulenko
,
T. N.
,
Laury-Kleintop
,
L.
,
Walter
,
M. F.
, and
Mason
,
R. P.
, 1997, “
Cholesterol, Calcium and Atherosclerosis: Is There a Role for Calcium Channel Blockers in Atheroprotection
,”
Int. J. Cardiol.
0167-5273,
62
, pp.
S55
S66
.
14.
Roijers
,
R. B.
,
Dutta
,
R. K.
,
Cleutjens
,
J. P. M.
,
Mutsaers
,
P. H. A.
,
de Goeij
,
J. J. M.
, and
van der Vusse
,
G. J.
, 2008, “
Early Calcification in Human Coronary Arteries as Determined With a Proton Microprobe
,”
Anal. Chem.
0003-2700,
80
, pp.
55
61
.
15.
Moore
,
M. P.
,
Spencer
,
T.
,
Salter
,
D. M.
,
Dearney
,
P. P.
,
Shaw
,
T. R. D.
,
Starkey
,
I. R.
,
Fitzgerald
,
P. J.
,
Erbel
,
R.
,
Lange
,
A.
,
McDicken
,
N. W.
,
Sutherland
,
G. R.
, and
Fox
,
F. A. A.
, 1998, “
Characterisation of Coronary Atherosclerotic Morphology by Spectral Analysis of Radiofrequency Signal: In Vitro Intravascular Ultrasound Study With Histological and Radiological Validation
,”
Heart
1355-6037,
79
, pp.
459
467
.
16.
Friedrich
,
G. J.
,
Moes
,
N. Y.
,
Mühlberger
,
V. A.
,
Gabl
,
C.
,
Mikuz
,
G.
,
Hausmann
,
D.
,
Fitzgerald
,
P. J.
, and
Yock
,
P. G.
, 1994, “
Detection of Intralesional Calcium by Intracoronary Ultrasound Depends on the Histologic Pattern
,”
Am. Heart J.
0002-8703,
128
, pp.
435
441
.
17.
Kolodgie
,
F. D.
,
Nakazawa
,
G.
,
Sangiorgi
,
G.
,
Ladich
,
E.
,
Burke
,
A. P.
, and
Virmani
,
R.
, 2007, “
Pathology of Atherosclerosis and Stenting
,”
Neuroimaging Clin. N. Am.
1052-5149,
17
, pp.
285
301
.
18.
Bobryshev
,
Y. V.
,
Killingsworth
,
M. C.
,
Lord
,
R. S. A.
, and
Grabs
,
A. J.
, 2008, “
Matrix Vesicles in the Fibrous Cap of Atherosclerotic Plaque: Possible Contribution to Plaque Rupture
,”
J. Cell. Mol. Med.
,
12
, pp.
2073
2082
. 1582-4934
19.
Stary
,
H. C.
, 2000, “
Natural History of Calcium Deposits in Atherosclerosis Progression and Regression
,”
Z. Kardiol.
0300-5860,
89
, pp.
SO28
SO35
.
20.
Frink
,
R. J.
, 2002,
Inflammatory Atherosclerosis: Characteristics of the Injurious Agent
,
Heart Research Foundation of Sacramento
,
Sacramento
, Chap. 5.
21.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer-Verlag
,
New York
, Chap. 7, pp.
319
335
.
22.
Holzapfel
,
G. A.
,
Sommer
,
G.
, and
Regitnig
,
P.
, 2004, “
Anisotropic Mechanical Properties of Tissue Components in Human Atherosclerotic Plaques
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
657
665
.
23.
Loree
,
H. M.
,
Grodzinsky
,
A. J.
,
Park
,
S. Y.
,
Gibson
,
L. J.
, and
Lee
,
R. T.
, 1994, “
Static Circumferential Tangential Modulus of Human Atherosclerotic Tissue
,”
J. Biomech.
0021-9290,
27
, pp.
195
204
.
24.
Lee
,
R. T.
,
Grodzinsky
,
A. J.
,
Frank
,
E. H.
,
Kamm
,
R. D.
, and
Schoen
,
F. J.
, 1991, “
Structure-Dependent Dynamic Mechanical Behavior of Fibrous Caps From Human Atherosclerotic Plaques
,”
Circulation
0009-7322,
83
, pp.
1764
1770
.
25.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Sicard
,
G. A.
,
Saffitz
,
J. E.
, and
Yuan
,
C.
, 2004, “
3D MRI-Based Multicomponent FSI Models for Atheroscerotic Plaques
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
947
960
.
26.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Saffitz
,
J. E.
,
Petruccelli
,
J. D.
,
Sicard
,
G. A.
, and
Yuan
,
C.
, 2005, “
Local Maximal Stress Hypothesis and Computational Plaque Vulnerability Index for Atherosclerotic Plaque Assessment
,”
Ann. Biomed. Eng.
0090-6964,
33
, pp.
1789
1801
.
27.
Tang
,
D.
,
Yang
,
C.
,
Zheng
,
J.
,
Woodard
,
P. K.
,
Saffitz
,
J. E.
,
Sicard
,
G. A.
,
Pilgram
,
T. K.
, and
Yuan
,
C.
, 2005, “
Quantifying Effects of Plaque Structure and Material Properties on Stress Distributions in Human Atherosclerotic Plaques Using 3D FSI Models
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
1185
1194
.
28.
Bluestein
,
D.
,
Alemu
,
Y.
,
Avrahami
,
I.
,
Gharib
,
M.
,
Dumont
,
K.
,
Ricotta
,
J. J.
, and
Einav
,
S.
, 2008, “
Influence of Microcalcifications on Vulnerable Plaque Mechanics Using FSI Modeling
,”
J. Biomech.
0021-9290,
41
, pp.
1111
1118
.
29.
Li
,
Z.
,
Howarth
,
S.
,
Tang
,
T.
, and
Gillard
,
J. H.
, 2006, “
How Critical is Fibrous Cap Thickness on Carotid Plaque Stability?: A Flow-Plaque Interaction Model
,”
Stroke
0039-2499,
37
, pp.
1195
1199
.
30.
Vengrenyuk
,
Y.
,
Cardoso
,
L.
, and
Weinbaum
,
S.
, 2008, “
Micro-CT Based Analysis of a New Paradigm for Vulnerable Plaque Rupture: Cellular Microcalcifications in Fibrous Cap
,”
Mol. Cell. Biomech.
,
5
, pp.
37
47
. 1556-5297
31.
Chau
,
A. H.
,
Chan
,
R. C.
,
Shishkov
,
M.
,
MacNeill
,
B.
,
Iftimia
,
N.
,
Tearney
,
J. G.
,
Kamm
,
R. D.
,
Bouma
,
B. E.
, and
Mofrad
,
M. R. K.
, 2004, “
Mechanical Analysis of Atherosclerotic Plaques Based on Optical Coherence Tomography
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
1494
1503
.
32.
Li
,
Z.
,
Howarth
,
S.
,
Trivedi
,
R. A.
,
U-King-Im
,
J. M.
,
Graves
,
M. J.
,
Brown
,
A.
,
Wang
,
L.
, and
Gillard
,
J. H.
, 2006, “
Stress Analysis of Carotid Plaque Rupture Based on In Vivo High Resolution MRI
,”
J. Biomech.
0021-9290,
39
, pp.
2611
2622
.
33.
Huang
,
H.
,
Virmani
,
R.
,
Younis
,
H.
,
Burke
,
A. P.
,
Kamm
,
R. D.
, and
Lee
,
R. T.
, 2001, “
The Impact of Calcification on the Biomechanical Stability of Atherosclerotic Plaques
,”
Circulation
0009-7322,
103
, pp.
1051
1056
.
34.
Zohdi
,
T. I.
, and
Szeri
,
A. J.
, 2005, “
Fatigue of Kidney Stones With Heterogeneous Microstructure Subjected to Shock-Wave Lithotripsy
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
1552-4973,
75
, pp.
351
358
.
35.
Stylianopoulos
,
T.
, and
Barocas
,
V. H.
, 2007, “
Multiscale, Structure-Based Modeling for the Elastic Mechanical Behavior of Arterial Walls
,”
ASME J. Biomech. Eng.
0148-0731,
129
, pp.
611
618
.
36.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 1962, “
On Some Variational Principles in Anisotropic and Nonhomogeneous Elasticity
,”
J. Mech. Phys. Solids
0022-5096,
10
, pp.
335
342
.
37.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 1963, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
127
140
.
38.
Wendelhag
,
I.
,
Wiklund
,
O.
, and
Wikstrand
,
J.
, 1996, “
On Quantifying Plaque Size and Intima-Media Thickness in Carotid and Femoral Arteries
,”
Arterioscler. Thromb., Vasc. Biol.
,
16
, pp.
843
850
.
39.
Moreno
,
P. R.
,
Lodder
,
R. A.
,
Purushothaman
,
K. R.
,
Charash
,
W. E.
,
O’Connor
,
W. N.
, and
Muller
,
J. E.
, 2002, “
Detection of Lipid Pool, Thin Fibrous Cap, and Inflammatory Cells in Human Aortic Atherosclerotic Plaques by Near-Infrared Spectroscopy
,”
Circulation
0009-7322,
105
, pp.
923
927
.
40.
Virmani
,
R.
,
Burke
,
A. P.
,
Farb
,
A.
, and
Kolodgie
,
F. D.
, 2006, “
Pathology of the Vulnerable Plaque
,”
J. Am. Coll. Cardiol.
0735-1097,
47
, pp.
C13
C18
.
41.
Stroud
,
J. S.
,
Berger
,
S. A.
, and
Saloner
,
D.
, 2002, “
Numerical Analysis of Slow Through a Severely Stenotic Carotid Artery Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
9
20
.
42.
Zohdi
,
T. I.
, and
Wriggers
,
P.
, 2005,
Introduction to Computational Micromechanics
,
Springer-Verlag
,
Berlin
, Chap. 6.
43.
Gilmore
,
R. S.
, and
Katz
,
J. L.
, 1982, “
Elastic Properties of Apetites
,”
J. Mater. Sci.
0022-2461,
17
, pp.
1131
1141
.
44.
Temizer
,
I.
, and
Zohdi
,
T. I.
, 2007, “
A Numerical Method for Homogenization in Nonlinear Elasticity
,”
Comput. Mech.
0178-7675,
40
, pp.
281
298
.
45.
Zohdi
,
T. I.
, 2003, “
On the Compaction of Cohesive Hyperelastic Granules at Finite Strains
,”
Proc. R. Soc. London, Ser. A
0950-1207,
454
(
2034
), pp.
1395
1401
.
46.
Gent
,
A. N.
, 1980, “
Detachment of an Elastic Matrix From a Rigid Spherical Inclusion
,”
J. Mater. Sci.
0022-2461,
15
, pp.
2884
2888
.
47.
Lopes
,
M. A.
,
Knowles
,
J. C.
, and
Santos
,
J. D.
, 2000, “
Structural Insights of Glass Reinforced Hydroxyapatite Composites by Rietveld Refinement
,”
Biomaterials
0142-9612,
21
, pp.
1905
1910
.
48.
Cowin
,
S. C.
, and
Doty
,
S. B.
, 2007,
Tissue Mechanics
,
Springer-Verlag
,
New York
, Chap. 10, pp.
297
304
.
49.
Flinn
,
R. A.
, and
Trojan
,
P. K.
, 1995,
Engineering Materials and Their Applications
,
Wiley
,
New York
, Chap. 1, pp.
18
31
.
50.
Gent
,
A. N.
, and
Park
,
B.
, 1984, “
Failure Processes in Elastomers at or Near a Rigid Spherical Inclusion
,”
J. Mater. Sci.
0022-2461,
19
, pp.
1947
1956
.
51.
Li
,
Z.
,
Howarth
,
S.
,
Tang
,
T.
,
U-King-Im
,
J.
, and
Gillard
,
J. H.
, 2007, “
Does Calcium Deposition Play a Role in the Stability of Atheroma? Location may be the key
,”
Cerebrovasc Dis.
1015-9770,
24
, pp.
452
459
.
52.
Versluis
,
A.
,
Bank
,
A. J.
, and
Douglas
,
W. H.
, 2006, “
Fatigue and Plaque Rupture in Myocardial Infarction
,”
J. Biomech.
0021-9290,
39
, pp.
339
347
.
53.
Finet
,
G.
,
Ohayon
,
J.
, and
Rioufol
,
G.
, 2004, “
Biomechanical Interaction Between Cap Thickness, Lipid Core Composition and Blood Pressure in Vulnerable Coronary Plaque: Impact on Stability or Instability
,”
Coron. Artery Dis.
0954-6928,
15
, pp.
13
20
.
You do not currently have access to this content.