Finite element methods have been applied to evaluate in vivo joint behavior, new devices, and surgical techniques but have typically been applied to a small or single subject cohort. Anatomic variability necessitates the use of many subject-specific models or probabilistic methods in order to adequately evaluate a device or procedure for a population. However, a fully deformable finite element model can be computationally expensive, prohibiting large multisubject or probabilistic analyses. The aim of this study was to develop a group of subject-specific models of the patellofemoral joint and evaluate trade-offs in analysis time and accuracy with fully deformable and rigid body articular cartilage representations. Finite element models of eight subjects were used to tune a pressure-overclosure relationship during a simulated deep flexion cycle. Patellofemoral kinematics and contact mechanics were evaluated and compared between a fully deformable and a rigid body analysis. Additional eight subjects were used to determine the validity of the rigid body pressure-overclosure relationship as a subject-independent parameter. There was good agreement in predicted kinematics and contact mechanics between deformable and rigid analyses for both the tuned and test groups. Root mean square differences in kinematics were less than 0.5 deg and 0.2 mm for both groups throughout flexion. Differences in contact area and peak and average contact pressures averaged 5.4%, 9.6%, and 3.8%, respectively, for the tuned group and 6.9%, 13.1%, and 6.4%, respectively, for the test group, with no significant differences between the two groups. There was a 95% reduction in computational time with the rigid body analysis as compared with the deformable analysis. The tuned pressure-overclosure relationship derived from the patellofemoral analysis was also applied to tibiofemoral (TF) articular cartilage in a group of eight subjects. Differences in contact area and peak and average contact pressures averaged 8.3%, 11.2%, and 5.7% between rigid and deformable analyses in the tibiofemoral joint. As statistical, probabilistic, and optimization techniques can require hundreds to thousands of analyses, a viable platform is crucial to component evaluation or clinical applications. The computationally efficient rigid body platform described in this study may be integrated with statistical and probabilistic methods and has potential clinical application in understanding in vivo joint mechanics on a subject-specific or population basis.

1.
Besier
,
T. F.
,
Gold
,
G. E.
,
Delp
,
S. L.
,
Fredericson
,
M.
, and
Beaupre
,
G. S.
, 2008, “
The Influence of Femoral Internal and External Rotation on Cartilage Stresses With the Patellofemoral Joint
,”
J. Orthop. Res.
0736-0266,
26
, pp.
1627
1635
.
2.
Beillas
,
P.
,
Papaioannou
,
G.
,
Tashman
,
S.
, and
Yang
,
K. H.
, 2004, “
A New Method to Investigate In Vivo Knee Behavior Using a Finite Element Model of the Lower Limb
,”
J. Biomech.
0021-9290,
37
, pp.
1019
1030
.
3.
Heegaard
,
J. H.
,
Leyvraz
,
P. F.
, and
Hovey
,
C. B.
, 2001, “
A Computer Model to Simulate Patellar Biomechanics Following Total Knee Replacement: The Effects of Femoral Component Alignment
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
, pp.
415
423
.
4.
Godest
,
A. C.
,
Beaugonin
,
M.
,
Haug
,
E.
,
Taylor
,
M.
, and
Gregson
,
P. J.
, 2002, “
Simulation of a Knee Joint Replacement During a Gait Cycle Using Explicit Finite Element Analysis
,”
J. Biomech.
0021-9290,
35
, pp.
267
275
.
5.
Halloran
,
J. P.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
, 2005, “
Explicit Finite Element Modeling of Total Knee Replacement Mechanics
,”
J. Biomech.
0021-9290,
38
, pp.
323
331
.
6.
Bischoff
,
J. E.
,
Hertzler
,
J. S.
, and
Mason
,
J. J.
, 2009, “
Patellofemoral Interactions in Walking, Stair Ascent, and Stair Descent Using a Virtual Patella Model
,”
J. Biomech.
0021-9290,
42
, pp.
1678
1684
.
7.
Shirazi
,
R.
, and
Shirazi-Adl
,
A.
, 2009, “
Computational Biomechanics of Articular Cartilage of Human Knee Joint: Effect of Osteochondral Defects
,”
J. Biomech.
0021-9290,
42
, pp.
2458
2465
.
8.
Fregly
,
B. J.
, 2008, “
Computational Assessment of Combinations of Gait Modifications for Knee Osteoarthritis Rehabilitation
,”
IEEE Trans. Biomed. Eng.
0018-9294,
55
, pp.
2104
2106
.
9.
Kessler
,
O.
,
Patil
,
S.
,
Colwell
,
C. W.
, Jr.
, and
D’Lima
,
D. D.
, 2008, “
The Effect of Femoral Component Malrotation on Patellar Biomechanics
,”
J. Biomech.
0021-9290,
41
, pp.
3332
3339
.
10.
Barink
,
M.
,
van Kampen
,
A.
,
de Waal Malefijit
,
M.
, and
Verdonschot
,
N.
, 2005, “
A Three-Dimensional Dynamic Finite Element Model of the Prosthetic Knee Joint: Simulation of Joint Laxity and Kinematics
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
219
, pp.
415
424
.
11.
Katchburian
,
M. V.
,
Bull
,
A. M.
,
Shih
,
Y. F.
,
Heatley
,
F. W.
, and
Amis
,
A. A.
, 2003, “
Measurement of Patellar Tracking: Assessment and Analysis of the Literature
,”
Clin. Orthop. Relat. Res.
0009-921X,
412
, pp.
241
259
.
12.
Komistek
,
R. D.
,
Dennis
,
D. A.
, and
Mahfouz
,
M.
, 2003, “
In Vivo Fluoroscopic Analysis of the Normal Human Knee
,”
Clin. Orthop. Relat. Res.
0009-921X,
410
, pp.
69
81
.
13.
Moro-oka
,
T. A.
,
Hamai
,
S.
,
Miura
,
H.
,
Shimoto
,
T.
,
Higaki
,
H.
,
Fregly
,
B. J.
,
Iwamoto
,
Y.
, and
Banks
,
S. A.
, 2008, “
Dynamic Activity Dependence of In Vivo Normal Knee Kinematics
,”
J. Orthop. Res.
0736-0266,
26
, pp.
428
434
.
14.
Hinterwimmer
,
S.
,
Gotthardt
,
M.
,
von Eisenhart-Rothe
,
R.
,
Sauerland
,
S.
,
Siebert
,
M.
,
Vogl
,
T.
,
Eckstein
,
F.
, and
Graichen
,
H.
, 2005, “
In Vivo Contact Areas of the Knee in Patients With Patellar Subluxation
,”
J. Biomech.
0021-9290,
38
, pp.
2095
2101
.
15.
Feller
,
J. A.
,
Amis
,
A. A.
,
Andrish
,
J. T.
,
Arendt
,
E. A.
,
Erasmus
,
P. J.
, and
Powers
,
C. M.
, 2007, “
Surgical Biomechanics of the Patellofemoral Joint
,”
Arthroscopy: J. Relat. Surg.
0749-8063,
23
, pp.
542
553
.
16.
Easley
,
S. K.
,
Pal
,
S.
,
Towaszewski
,
P. R.
,
Petrella
,
A. J.
,
Rullkoetter
,
P. J.
, and
Laz
,
P. J.
, 2007, “
Finite Element-Based Probabilistic Analysis Tools for Orthopaedic Applications
,”
Comput. Methods Programs Biomed.
0169-2607,
85
, pp.
32
40
.
17.
Halloran
,
J. P.
,
Easley
,
S. K.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
, 2005, “
Comparison of Deformable and Elastic Foundation Finite Element Simulations for Predicting Knee Replacement Kinematics
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
813
818
.
18.
Grosland
,
N. M.
,
Bafna
,
R.
, and
Magnotta
,
V. A.
, 2009, “
Automated Hexahedral Meshing of Anatomic Structures Using Deformable Registration
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
12
, pp.
35
43
.
19.
Baldwin
,
M. A.
,
Langenderfer
,
J. E.
,
Rullkoetter
,
P. J.
, and
Laz
,
P. J.
, 2010, “
Development of Subject-Specific and Statistical Shape Models of the Knee Using an Efficient Segmentation and Mesh-Morphing Approach
,”
Comput. Methods Programs Biomed.
0169-2607,
97
, pp.
232
240
.
20.
Baldwin
,
M. A.
,
Clary
,
C.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
, 2009, “
Verification of Predicted Specimen-Specific Natural and Implanted Patellofemoral Kinematics During Simulated Deep Knee Bend
,”
J. Biomech.
0021-9290,
42
, pp.
2341
2348
.
21.
Farahmand
,
F.
,
Senavongse
,
W.
, and
Amis
,
A. A.
, 1998, “
Quantitative Study of the Quadriceps Muscles and Trochlear Groove Geometry Related to Instability of the Patellofemoral Joint
,”
J. Orthop. Res.
0736-0266,
16
, pp.
136
143
.
22.
Grood
,
E. S.
, and
Suntay
,
W. J.
, 1983, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
0148-0731,
105
, pp.
136
144
.
23.
2009, ABAQUS 6.9-2 Analysis User’s Manual, Simulia Corp., Providence, RI.
24.
Mesfar
,
W.
, and
Shirazi-Adl
,
A.
, 2005, “
Biomechanics of the Knee Joint in Flexion Under Various Quadriceps Forces
,”
The Knee
0968-0160,
12
, pp.
424
434
.
25.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
, 1991, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
0021-9290,
24
, pp.
1019
1031
.
26.
Fregly
,
B. J.
,
Sawyer
,
W. G.
,
Harman
,
M. K.
, and
Banks
,
S. A.
, 2005, “
Computational Wear Prediction of a Total Knee Replacement From In Vivo Kinematics
,”
J. Biomech.
0021-9290,
38
, pp.
305
314
.
27.
Grosland
,
N. M.
,
Shvanna
,
K. H.
,
Magnotta
,
V. A.
,
Kallemeyn
,
N. A.
,
DeVries
,
N. A.
,
Tadepalli
,
S. C.
, and
Lisle
,
C.
, 2009, “
IA-FEMesh: An Open-Source, Interactive, Multiblock Approach to Anatomic Finite Element Model Development
,”
Comput. Methods Programs Biomed.
0169-2607,
94
, pp.
96
107
.
28.
Yin
,
Y.
,
Zhang
,
X.
,
Williams
,
R.
,
Wu
,
X.
,
Anderson
,
D. D.
, and
Sonka
,
M.
, “
LOGISMOS–Layered Optimal Graph Image Segmentation of Multiple Objects and Surfaces: Cartilage Segmentation in the Knee Joint
,”
IEEE Trans. Med. Imaging
0278-0062, in press.
29.
Amis
,
A. A.
,
Senavongse
,
W.
, and
Bull
,
A. M.
, 2006, “
Patellofemoral Kinematics During Knee Flexion-Extension: An In Vitro Study
,”
J. Orthop. Res.
0736-0266,
24
, pp.
2201
2211
.
30.
Powers
,
C. M.
,
Lilley
,
J. C.
, and
Lee
,
T. Q.
, 1998, “
The Effects of Axial and Multi-Plane Loading of the Extensor Mechanism on the Patellofemoral Joint
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
13
, pp.
616
624
.
31.
Besier
,
T. F.
,
Draper
,
C. E.
,
Gold
,
G. E.
,
Beaupre
,
G. S.
, and
Delp
,
S. L.
, 2005, “
Patellofemoral Joint Contact Area Increases With Knee Flexion and Weight-Bearing
,”
J. Orthop. Res.
0736-0266,
23
, pp.
345
350
.
32.
Matsuda
,
S.
,
Ishinishi
,
T.
,
White
,
S. E.
, and
Whiteside
,
L. A.
, 1997, “
Patellofemoral Joint After Total Knee Arthroplasty: Effect on Contact Area and Contact Stress
,”
J. Arthroplasty
0883-5403,
12
, pp.
790
797
.
You do not currently have access to this content.