The detailed geometry of atherosclerosis-prone vascular segments may influence their susceptibility by mediating local hemodynamics. An appreciation of the role of specific geometric variables is complicated by the considerable correlation among the many parameters that can be used to describe arterial shape and size. Factor analysis is a useful tool for identifying the essential features of such an inter-related data set, as well as for predicting hemodynamic risk in terms of these features and for interpreting the role of specific geometric variables. Here, factor analysis is applied to a set of 14 geometric variables obtained from magnetic resonance images of 50 human carotid bifurcations. Two factors alone were capable of predicting 12 hemodynamic metrics related to shear and near-wall residence time with adjusted squared Pearson’s correlation coefficient as high as 0.54 and P-values less than 0.0001. One factor measures cross-sectional expansion at the bifurcation; the other measures the colinearity of the common and internal carotid artery axes at the bifurcation. The factors explain the apparent lack of an effect of branch angle on hemodynamic risk. The relative risk among the 50 bifurcations, based on time-average wall shear stress, could be predicted with a sensitivity and specificity as high as 0.84. The predictability of the hemodynamic metrics and relative risk is only modestly sensitive to assumptions about flow rates and flow partitions in the bifurcation.

1.
Friedman
,
M. H.
,
Deters
,
O. J.
,
Mark
,
F. F.
,
Bargeron
,
C. B.
, and
Hutchins
,
G. M.
, 1983, “
Arterial Geometry Affects Hemodynamics: A Potential Risk Factor for Atherosclerosis
,”
Atherosclerosis
0021-9150,
46
(
2
), pp.
225
231
.
2.
Zhu
,
H.
,
Zhang
,
J.
,
Shih
,
J.
,
Lopez-Bertoni
,
F.
,
Hagaman
,
J. R.
,
Maeda
,
N.
, and
Friedman
,
M. H.
, 2009, “
Differences in Aortic Arch Geometry, Hemodynamics, and Plaque Patterns Between C57bl/6 and 129/Svev Mice
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
12
), p.
121005
.
3.
Thomas
,
J. B.
,
Antiga
,
L.
,
Che
,
S. L.
,
Milner
,
J. S.
,
Steinman
,
D. A.
,
Spence
,
J. D.
, and
Rutt
,
B. K.
, 2005, “
Variation in the Carotid Bifurcation Geometry of Young Versus Older Adults: Implications for Geometric Risk of Atherosclerosis
,”
Stroke
0039-2499,
36
(
11
), pp.
2450
2456
.
4.
Lee
,
S. W.
,
Antiga
,
L.
,
Spence
,
J. D.
, and
Steinman
,
D. A.
, 2008, “
Geometry of the Carotid Bifurcation Predicts Its Exposure to Disturbed Flow
,”
Stroke
0039-2499,
39
(
8
), pp.
2341
2347
.
5.
Zhu
,
H.
,
Ding
,
Z.
,
Piana
,
R. N.
,
Gehrig
,
T. R.
, and
Friedman
,
M. H.
, 2009, “
Cataloguing the Geometry of the Human Coronary Arteries: A Potential Tool for Predicting Risk of Coronary Artery Disease
,”
Int. J. Cardiol.
0167-5273,
135
(
1
), pp.
43
52
.
6.
He
,
X. J.
, and
Ku
,
D. N.
, 1996, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
1
), pp.
74
82
.
7.
Himburg
,
H. A.
,
Grzybowski
,
D. M.
,
Hazel
,
A. L.
,
LaMack
,
J. A.
,
Li
,
X. -M.
, and
Friedman
,
M. H.
, 2004, “
Spatial Comparison Between Wall Shear Stress Measures and Porcine Arterial Endothelial Permeability
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
286
(
5
), pp.
H1916
H1922
.
8.
Lee
,
S. W.
,
Antiga
,
L.
, and
Steinman
,
D. A.
, 2009, “
Correlations Among Indicators of Disturbed Flow at the Normal Carotid Bifurcation
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
6
), p.
061013
.
9.
Costello
,
A. B.
, and
Osborne
,
J. W.
, 2005, “
Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most From Your Analysis
,”
Practical Assess Res. Eval.
,
10
(
7
), pp.
1
9
.
10.
Joliffe
,
I.
, and
Morgan
,
B.
, 1992, “
Principal Component Analysis and Exploratory Factor Analysis
,”
Stat. Methods Med. Res.
0962-2802,
1
(
1
), pp.
69
95
.
11.
Kaiser
,
H. F.
, 1958, “
The Varimax Criterion for Analytic Rotation in Factor-Analysis
,”
Psychometrika
0033-3123,
23
(
3
), pp.
187
200
.
12.
Ding
,
Z.
,
Biggs
,
T.
,
Seed
,
W. A.
, and
Friedman
,
M. H.
, 1997, “
Influence of the Geometry of the Left Main Coronary Artery Bifurcation on the Distribution of Sudanophilia in the Daughter Vessels
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
17
(
7
), pp.
1356
1360
.
13.
Friedman
,
M. H.
,
Baker
,
P. B.
,
Ding
,
Z.
, and
Kuban
,
B. D.
, 1996, “
Relationship Between the Geometry and Quantitative Morphology of the Left Anterior Descending Coronary Artery
,”
Atherosclerosis
0021-9150,
125
(
2
), pp.
183
192
.
14.
Saltissi
,
S.
,
Webb-Peploe
,
M. M.
, and
Coltart
,
D. J.
, 1979, “
Effect of Variation in Coronary Artery Anatomy on Distribution of Stenotic Lesions
,”
Br. Heart J.
0007-0769,
42
(
2
), pp.
186
191
.
15.
Sharp
,
W. V.
,
Donovan
,
D. L.
,
Teague
,
P. C.
, and
Mosteller
,
R. D.
, 1982, “
Arterial Occlusive Disease: A Function of Vessel Bifurcation Angle
,”
Surgery (St. Louis)
0039-6060,
91
(
6
), pp.
680
685
.
16.
Nguyen
,
N. D.
, and
Haque
,
A. K.
, 1990, “
Effect of Hemodynamic Factors on Atherosclerosis in the Abdominal Aorta
,”
Atherosclerosis
0021-9150,
84
(
1
), pp.
33
39
.
17.
Fisher
,
M.
, and
Fieman
,
S.
, 1990, “
Geometric Factors of the Bifurcation in Carotid Atherogenesis
,”
Stroke
0039-2499,
21
(
2
), pp.
267
271
.
18.
Perktold
,
K.
,
Peter
,
R. O.
,
Resch
,
M.
, and
Langs
,
G.
, 1991, “
Pulsatile Non-Newtonian Blood Flow in Three-Dimensional Carotid Bifurcation Models: A Numerical Study of Flow Phenomena Under Different Bifurcation Angles
,”
J. Biomed. Eng.
0141-5425,
13
(
6
), pp.
507
515
.
You do not currently have access to this content.