The tibio-femoral joint has been mechanically approximated with two fixed kinematic axes of rotation, the longitudinal rotational (LR) axis in the tibia and the flexion-extension (FE) axis in the femur. The mechanical axis finder developed by Hollister et al. (1993, “The Axes of Rotation of the Knee,” Clin. Orthop. Relat. Res., 290, pp. 259–268) identified the two fixed axes but the visual-based alignment introduced errors in the method. Therefore, the objectives were to develop and validate a new axis finding method to identify the LR and FE axes which improves on the error of the mechanical axis finder. The virtual axis finder retained the concepts of the mechanical axis finder but utilized a mathematical optimization to identify the axes. Thus, the axes are identified in a two-step process: First, the LR axis is identified from pure internal-external rotation of the tibia and the FE axis is identified after the LR axis is known. The validation used virtual simulations of 3D video-based motion analysis to create relative motion between the femur and tibia during pure internal-external rotation, and flexion-extension with coupled internal-external rotation. The simulations modeled tibio-femoral joint kinematics and incorporated 1 mm of random measurement error. The root mean squared errors (RMSEs) in identifying the position and orientation of the LR and FE axes with the virtual axis finder were 0.45 mm and 0.20 deg, and 0.11 mm and 0.20 deg, respectively. These errors are at least two times better in position and seven times better in orientation than those of the mechanical axis finder. Variables, which were considered a potential source of variation between joints and/or measurement systems, were tested for their sensitivity to the RMSE of identifying the axes. Changes in either the position or orientation of a rotational axis resulted in high sensitivity to translational RMSE (6.8 mm of RMSE per mm of translation) and rotational RMSE (1.38 deg of RMSE per degree of rotation), respectively. Notwithstanding these high sensitivities, corresponding errors can be reduced by segmenting the range of motion into regions where changes in either position or orientation are small. The virtual axis finder successfully increased the accuracy of the mechanical axis finder when the axes of motion are fixed with respect to the bones, but must be used judiciously in applications which do not have fixed axes of rotation.

1.
Hicks
,
J.
,
Arnold
,
A.
,
Anderson
,
F.
,
Schwartz
,
M.
, and
Delp
,
S.
, 2007, “
The Effect of Excessive Tibial Torsion on the Capacity of Muscles to Extend the Hip and Knee During Single-Limb Stance
,”
Gait and Posture
0966-6362,
26
(
4
), pp.
546
552
.
2.
Van Gheluwe
,
B.
,
Kirby
,
K. A.
, and
Hagman
,
F.
, 2005, “
Effects of Simulated Genu Valgum and Genu Varum on Ground Reaction Forces and Subtalar Joint Function During Gait
,”
J. Am. Podiatr. Med. Assoc.
8750-7315,
95
(
6
), pp.
531
541
.
3.
Fuchs
,
B.
,
Kotajarvi
,
B. R.
,
Kaufman
,
K. R.
, and
Sim
,
F. H.
, 2003, “
Functional Outcome of Patients With Rotationplasty About the Knee
,”
Clin. Orthop. Relat. Res.
0009-921X,
415
, pp.
52
58
.
4.
Reinbolt
,
J. A.
,
Haftka
,
R. T.
,
Chmielewski
,
T. L.
, and
Fregly
,
B. J.
, 2008, “
A Computational Framework to Predict Post-Treatment Outcome for Gait-Related Disorders
,”
Med. Eng. Physica
,
30
(
4
), pp.
434
443
.
5.
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Ackland
,
T. R.
, and
Cochrane
,
J. L.
, 2001, “
Anticipatory Effects on Knee Joint Loading During Running and Cutting Maneuvers
,”
Med. Sci. Sports Exercise
0195-9131,
33
(
7
), pp.
1176
1181
.
6.
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Cochrane
,
J. L.
, and
Ackland
,
T. R.
, 2001, “
External Loading of the Knee Joint During Running and Cutting Maneuvers
,”
Med. Sci. Sports Exercise
0195-9131,
33
(
7
), pp.
1168
1175
.
7.
Asano
,
T.
,
Akagi
,
M.
, and
Nakamura
,
T.
, 2005, “
The Functional Flexion-Extension Axis of the Knee Corresponds to the Surgical Epicondylar Axis: In Vivo Analysis Using a Biplanar Image-Matching Technique
,”
J. Arthroplasty
0883-5403,
20
(
8
), pp.
1060
1067
.
8.
Edwards
,
M. L.
, 2000, “
Below Knee Prosthetic Socket Designs and Suspension Systems
,”
Phys. Med. Rehabil. Clin. N. Am.
,
11
(
3
), pp.
585
593
.
9.
Incavo
,
S. J.
,
Coughlin
,
K. M.
,
Pappas
,
C.
, and
Beynnon
,
B. D.
, 2003, “
Anatomic Rotational Relationships of the Proximal Tibia, Distal Femur, and Patella: Implications for Rotational Alignment in Total Knee Arthroplasty
,”
J. Arthroplasty
0883-5403,
18
(
5
), pp.
643
648
.
10.
Most
,
E.
,
Axe
,
J.
,
Rubash
,
H.
, and
Li
,
G.
, 2004, “
Sensitivity of the Knee Joint Kinematics Calculation to Selection of Flexion Axes
,”
J. Biomech.
0021-9290,
37
(
11
), pp.
1743
1748
.
11.
Besier
,
T. F.
,
Sturnieks
,
D. L.
,
Alderson
,
J. A.
, and
Lloyd
,
D. G.
, 2003, “
Repeatability of Gait Data Using a Functional Hip Joint Centre and a Mean Helical Knee Axis
,”
J. Biomech.
0021-9290,
36
(
8
), pp.
1159
1168
.
12.
Lenz
,
N. M.
,
Mane
,
A.
,
Maletsky
,
L. P.
, and
Morton
,
N. A.
, 2008, “
The Effects of Femoral Fixed Body Coordinate System Definition on Knee Kinematic Description
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
2
), p.
021014
.
13.
Ramakrishnan
,
H. K.
, and
Kadaba
,
M. P.
, 1991, “
On the Estimation of Joint Kinematics During Gait
,”
J. Biomech.
0021-9290,
24
(
10
), pp.
969
977
.
14.
Rivest
,
L. P.
, 2005, “
A Correction for Axis Misalignment in the Joint Angle Curves Representing Knee Movement in Gait Analysis
,”
J. Biomech.
0021-9290,
38
(
8
), pp.
1604
1611
.
15.
Hollister
,
A. M.
,
Jatana
,
S.
,
Singh
,
A. K.
,
Sullivan
,
W. W.
, and
Lupichuk
,
A. G.
, 1993, “
The Axes of Rotation of the Knee
,”
Clin. Orthop. Relat. Res.
0009-921X,
290
, pp.
259
268
.
16.
Churchill
,
D. L.
,
Incavo
,
S. J.
,
Johnson
,
C. C.
, and
Beynnon
,
B. D.
, 1998, “
The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee
,”
Clin. Orthop. Relat. Res.
0009-921X,
356
, pp.
111
118
.
17.
Asano
,
T.
,
Akagi
,
M.
,
Tanaka
,
K.
,
Tamura
,
J.
, and
Nakamura
,
T.
, 2001, “
In Vivo Three-Dimensional Knee Kinematics Using a Biplanar Image-Matching Technique
,”
Clin. Orthop. Relat. Res.
0009-921X,
388
, pp.
157
166
.
18.
Sonka
,
M.
,
Hlavac
,
V.
, and
Boyle
,
B.
, 1999,
Image Processing, Analysis, and Machine Vision
,
Brooks-Cole
,
Pacific Grove, CA
.
19.
DeLuzio
,
K. J.
,
Wyss
,
U. P.
,
Li
,
J.
, and
Costigan
,
P. A.
, 1993, “
A Procedure to Validate Three-Dimensional Motion Assessment Systems
,”
J. Biomech.
0021-9290,
26
(
6
), pp.
753
759
.
20.
Windolf
,
M.
,
Gotzen
,
N.
, and
Morlock
,
M.
, 2008, “
Systematic Accuracy and Precision Analysis of Video Motion Capturing Systems—Exemplified on the Vicon-460 System
,”
J. Biomech.
0021-9290,
41
(
12
), pp.
2776
2780
.
21.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
, 1988, “
The Envelope of Passive Knee Joint Motion
,”
J. Biomech.
0021-9290,
21
(
9
), pp.
705
720
.
22.
Johal
,
P.
,
Williams
,
A.
,
Wragg
,
P.
,
Hunt
,
D.
, and
Gedroyc
,
W.
, 2005, “
Tibio-Femoral Movement in the Living Knee. A Study of Weight Bearing and Non-Weight Bearing Knee Kinematics Using ‘Interventional’ MRI
,”
J. Biomech.
0021-9290,
38
(
2
), pp.
269
276
.
23.
Coughlin
,
K. M.
,
Incavo
,
S. J.
,
Churchill
,
D. L.
, and
Beynnon
,
B. D.
, 2003, “
Tibial Axis and Patellar Position Relative to the Femoral Epicondylar Axis During Squatting
,”
J. Arthroplasty
0883-5403,
18
(
8
), pp.
1048
1055
.
24.
Bach
,
J. M.
, and
Hull
,
M. L.
, 1995, “
A New Load Application System for In Vitro Study of Ligamentous Injuries to the Human Knee Joint
,”
ASME J. Biomech. Eng.
0148-0731,
117
(
4
), pp.
373
382
.
25.
Martin
,
K. J.
,
Neu
,
C. P.
, and
Hull
,
M. L.
, 2007, “
An MRI-Based Method to Align the Compressive Loading Axis for Human Cadaveric Knees
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
6
), pp.
855
862
.
26.
Durselen
,
L.
,
Claes
,
L.
, and
Kiefer
,
H.
, 1995, “
The Influence of Muscle Forces and External Loads on Cruciate Ligament Strain
,”
Am. J. Sports Med.
0363-5465,
23
(
1
), pp.
129
136
.
27.
Howell
,
S. M.
,
Kuznik
,
K.
,
Hull
,
M. L.
, and
Siston
,
R. A.
, 2008, “
Results of an Initial Experience With Custom-Fit Positioning Total Knee Arthroplasty in a Series of 48 Patients
,”
Orthopedics
0147-7447,
31
(
9
), pp.
857
863
.
28.
Banks
,
S.
,
Bellemans
,
J.
,
Nozaki
,
H.
,
Whiteside
,
L. A.
,
Harman
,
M.
, and
Hodge
,
W. A.
, 2003, “
Knee Motions During Maximum Flexion in Fixed and Mobile-Bearing Arthroplasties
,”
Clin. Orthop. Relat. Res.
0009-921X,
410
, pp.
131
138
.
29.
Bingham
,
J.
, and
Li
,
G.
, 2006, “
An Optimized Image Matching Method for Determining In-Vivo TKA Kinematics With a Dual-Orthogonal Fluoroscopic Imaging System
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
4
), pp.
588
595
.
30.
Fantozzi
,
S.
,
Leardini
,
A.
,
Banks
,
S. A.
,
Marcacci
,
M.
,
Giannini
,
S.
, and
Catani
,
F.
, 2004, “
Dynamic In-Vivo Tibio-Femoral and Bearing Motions in Mobile Bearing Knee Arthroplasty
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
12
(
2
), pp.
144
151
.
31.
Mahoney
,
O. M.
,
Kinsey
,
T. L.
,
Banks
,
A. Z.
, and
Banks
,
S. A.
, 2009, “
Rotational Kinematics of a Modern Fixed-Bearing Posterior Stabilized Total Knee Arthroplasty
,”
J. Arthroplasty
0883-5403,
24
(
4
), pp.
641
645
.
32.
Moro-oka
,
T. A.
,
Muenchinger
,
M.
,
Canciani
,
J. P.
, and
Banks
,
S. A.
, 2007, “
Comparing In Vivo Kinematics of Anterior Cruciate-Retaining and Posterior Cruciate-Retaining Total Knee Arthroplasty
,”
Knee Surg. Sports Traumatol. Arthrosc
0942-2056,
15
(
1
), pp.
93
99
.
33.
Sato
,
T.
,
Koga
,
Y.
, and
Omori
,
G.
, 2004, “
Three-Dimensional Lower Extremity Alignment Assessment System: Application to Evaluation of Component Position After Total Knee Arthroplasty
,”
J. Arthroplasty
0883-5403,
19
(
5
), pp.
620
628
.
34.
Moro-oka
,
T. A.
,
Hamai
,
S.
,
Miura
,
H.
,
Shimoto
,
T.
,
Higaki
,
H.
,
Fregly
,
B. J.
,
Iwamoto
,
Y.
, and
Banks
,
S. A.
, 2007, “
Can Magnetic Resonance Imaging-Derived Bone Models be Used for Accurate Motion Measurement With Single-Plane Three-Dimensional Shape Registration?
.”
J. Orthop. Res.
0736-0266,
25
(
7
), pp.
867
872
.
35.
Krackow
,
K. A.
,
Bayers-Thering
,
M.
,
Phillips
,
M. J.
, and
Mihalko
,
W. M.
, 1999, “
A New Technique for Determining Proper Mechanical Axis Alignment During Total Knee Arthroplasty: Progress Toward Computer-Assisted TKA
,”
Orthopedics
0147-7447,
22
(
7
), pp.
698
702
.
36.
Jessup
,
D. E.
,
Worland
,
R. L.
,
Clelland
,
C.
, and
Arredondo
,
J.
, 1997, “
Restoration of Limb Alignment in Total Knee Arthroplasty: Evaluation and Methods
,”
J. South Orthop. Assoc.
1059-1052,
6
(
1
), pp.
37
47
.
37.
Weidenhielm
,
L.
,
Wykman
,
A.
,
Lundberg
,
A.
, and
Brostrom
,
L. A.
, 1993, “
Knee Motion After Tibial Osteotomy for Arthrosis. Kinematic Analysis of 7 Patients
,”
Acta Orthop. Scand.
0001-6470,
64
(
3
), pp.
317
319
.
38.
Khan
,
R.
,
Konyves
,
A.
,
Rama
,
K. R.
,
Thomas
,
R.
, and
Amis
,
A. A.
, 2006, “
RSA Can Measure ACL Graft Stretching and Migration: Development of a New Method
,”
Clin. Orthop. Relat. Res.
0009-921X,
448
, pp.
139
145
.
You do not currently have access to this content.