Characterizing the biomechanical and biotribological properties for articular surfaces in healthy, damaged, and repaired states will both elucidate the understanding of mechanical degradation and lubricating phenomena and enhance the development of functional tissue engineered cartilage and surgical repair techniques. In recent work, a new methodology involving concomitant linear translational and oscillating rotational motion was developed to determine the frictional and wear characteristics of articular cartilage. The impetus of this work was to further characterize the biomechanical characteristics from stress relaxation and dynamic cyclical indentation testing of normal and damaged articular cartilage and to correlate the biotribological characteristic findings with the biomechanical data. Quasilinear viscoelastic (QLV) theory was used to curve fit the stress-relaxation data, while the dynamic data were used both to determine the dynamic properties through fast Fourier transform analysis and to validate the dynamic behavior based on the properties obtained from the QLV theory. Comparisons of the curve-fit parameters showed a significant decrease in pre- versus postwear elastic response, A(p<0.04), and viscous response, c(p<0.01). In addition, the short term relaxation time, τ1(p<0.0062), showed a significant decrease between surfaces with and without a defect. The magnitude of the complex modulus from dynamic tests revealed a decrease due to wear, lGlpostwearlGlprewear<1(p<0.05). The loss factor, tanδ, was generally greater while lGl was less for those specimens experiencing rotation. A linear regression analysis was performed to correlate μstatic and μinitial with the curve-fit QLV parameters, A, B, c, τ1, and τ2. Increasing coefficients of friction correlated with decreases in the elastic response, A, viscous response, c, and the short term relaxation time constant, τ1, while B became increasingly nonlinear and τ2 became shorter postwear. Qualitatively, scanning electron microscopy photographs revealed the mechanical degradation of the tissue surface due to wear. Surfaces with a defect had an increased amount of wear debris, which ultimately contributed to third body wear. Surfaces without a defect had preferentially aligned abrasions, while those surfaces not within the wear path showed no signs of wear. The efficacy of various repair techniques and innovative repair tissue models in comparison to normal and worn articular surface tissue can be determined through experimental designs involving both biomechanical and biotribological parameter characterizations. The development of this comprehensive testing scenario involving both biotribological and biomechanical characteristics is essential to the continued development of potential articular repair tissue.

1.
Mow
,
V. C.
, and
Soslowsky
,
L. J.
, 1991,
Basic Orthopaedic Biomechanics
,
V. C.
Mow
and
W. C.
Hayes
, eds.,
Raven
,
New York
, pp.
245
293
.
2.
Dintenfass
,
L.
, 1963, “
Lubrication in Synovial Joints: A Theoretical Analysis
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
45
, pp.
1241
1256
.
3.
Unsworth
,
A.
,
Dowson
,
D.
, and
Wright
,
V.
, 1975, “
The Frictional Behavior of Human Synovial Joints—Part I: Natural Joints
,”
ASME J. Lubr. Technol.
0022-2305,
97
, pp.
369
376
.
4.
Sokoloff
,
L.
, 1963, “
Elasticity of Articular Cartilage: Effect of Ions and Viscous Solutions
,”
Science
0036-8075,
141
, pp.
1055
1057
.
5.
Sokoloff
,
L.
, 1966, “
Elasticity of Aging Cartilage
,”
Fed. Proc.
0014-9446,
25
(
3
), pp.
1089
1095
.
6.
Kempson
,
G. E.
,
Freeman
,
M. A. R.
, and
Swanson
,
S. A. V.
, 1971, “
The Determination of a Creep Modulus for Articular Cartilage from Indentation Tests of the Human Femoral Head
,”
J. Biomech.
0021-9290,
4
, pp.
239
250
.
7.
Kempson
,
G. E.
,
Spivey
,
C. J.
,
Swanson
,
S. A. V.
, and
Freeman
,
M. A. R.
, 1971, “
Patterns of Cartilage Stiffness on Normal and Degenerate Human Femoral Heads
,”
J. Biomech.
0021-9290,
4
, pp.
597
609
.
8.
Hayes
,
W. C.
, and
Bodine
,
A. J.
, 1978, “
Flow-Independent Viscoelastic Properties of Articular Cartilage Matrix
,”
J. Biomech.
0021-9290,
11
(
8–9
), pp.
407
419
.
9.
Suh
,
J. K.
,
Li
,
Z.
, and
Woo
,
S. L.
, 1995, “
Dynamic Behavior of a Biphasic Cartilage Model Under Cyclic Compressive Loading
,”
J. Biomech.
0021-9290,
28
(
4
), pp.
357
364
.
10.
Sah
,
R. L.
,
Kim
,
Y. J.
,
Doong
,
J. Y.
,
Grodzinsky
,
A. J.
,
Plaas
,
A. H.
, and
Sandy
,
J. D.
, 1989, “
Biosynthetic Response of Cartilage Explants to Dynamic Compression
,”
J. Orthop. Res.
0736-0266,
7
(
5
), pp.
619
636
.
11.
Hirsch
,
C.
, 1944, “
A Contribution to the Pathogenesis of Chondromalacia of the Patella
,”
Acta Chir. Scand. Suppl.
0301-1860,
83
, pp.
101
106
.
12.
Kopta
,
J. A.
, and
Blosser
,
J. A.
, 1969, “
Elasticity of Articular Cartilage: Effects of Intra-Articular Steroid Administration and Medical Meniscectomy
,”
Clin. Orthop. Relat. Res.
0009-921X,
64
, pp.
21
32
.
13.
Fung
,
Y.
, 1972, “
Stress-Strain-History Relations of Soft Tissues in Simple Elongation
,”
Biomechanics: Its Foundations and Objectives
,
Y.
Fung
,
N.
Perrone
, and
M.
Anliker
, eds.,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
181
207
.
14.
Huang
,
C. Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
, 2001, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
5
), pp.
410
417
.
15.
Zheng
,
Y. P.
, and
Mak
,
A. F.
, 1999, “
Extraction of Quasi-Linear Viscoelastic Parameters for Llower Limb Soft Tissues From Manual Indentation Experiment
,”
ASME J. Biomech. Eng.
0148-0731,
121
(
3
), pp.
330
339
.
16.
Fung
,
Y.
, 1993, “
Bioviscoelastic Solids
,”
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
,
New York
, pp.
277
288
.
17.
Pinto
,
J. G.
, and
Patitucci
,
P. J.
, 1980, “
Visco-Elasticity of Passive Cardiac Muscle
,”
ASME J. Biomech. Eng.
0148-0731,
102
(
1
), pp.
57
61
.
18.
Woo
,
S. L.
,
Simon
,
B. R.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
, 1980, “
Quasi-Linear Viscoelastic Properties of Normal Articular Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
102
(
2
), pp.
85
90
.
19.
Woo
,
S. L.
,
Gomez
,
M. A.
, and
Akeson
,
W. H.
, 1981, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medical Collateral Ligament
,”
ASME J. Biomech. Eng.
0148-0731,
103
(
4
), pp.
293
298
.
20.
Sauren
,
A. A.
,
van Hout
,
M. C.
,
van Steenhoven
,
A. A.
,
Veldpaus
,
F. E.
, and
Janssen
,
J. D.
, 1983, “
The Mechanical Properties of Porcine Aortic Valve Tissues
,”
J. Biomech.
0021-9290,
16
(
5
), pp.
327
337
.
21.
Doehring
,
T. C.
,
Carew
,
E. O.
, and
Vesely
,
I.
, 2004, “
The Effect of Strain Rate on the Viscoelastic Response of Aortic Valve Tissue: A Direct-Fit Approach
,”
Ann. Biomed. Eng.
0090-6964,
32
(
2
), pp.
223
232
.
22.
Park
,
S.
, and
Ateshian
,
G. A.
, 2006, “
Dynamic Response of Immature Bovine Articular Cartilage in Tension and Compression and Nonlinear Viscoelastic Modeling of the Tensile Response
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
4
), pp.
623
630
.
23.
Yang
,
W.
,
Fung
,
T. C.
,
Chian
,
K. S.
, and
Chong
,
C. K.
, 2006, “
Viscoelasticity of Esophageal Tissue and Application of a QLV Model
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
6
), pp.
909
916
.
24.
Covert Brown
,
R. J.
, and
Ku
,
D. N.
, 2005, “
Durability Testing of Articular Cartilage Replacements
,”
Summer Bioengineering Conference
,
ASME
,
Vail, CO
.
25.
Barnett
,
C. H.
, and
Cobbold
,
A. F.
, 1962, “
Lubrication With Living Joints
,”
J. Bone Jt. Surg., Br. Vol.
0301-620X,
44B
, pp.
662
674
.
26.
Linn
,
F. C.
, 1967, “
Lubrication of Animal Joints. I. The Arthrotripsometer
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
49
(
6
), pp.
1079
1098
.
27.
Park
,
S.
,
Costa
,
K. D.
, and
Ateshian
,
G. A.
, “
Microscale Frictional Coefficient of Bovine Articular Cartilage From Atomic Force Microscopy
,”
Orthopaedic Research Society Meeting
.
28.
Forster
,
H.
, and
Fisher
,
J.
, 1999, “
The Influence of Continuous Sliding and Subsequent Surface Wear on the Friction of Articular Cartilage
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
213
, pp.
329
345
.
29.
Northwood
,
E.
, and
Fisher
,
J.
, 2007, “
A Multi-Directional In Vitro Investigation into Friction, Damage, and Wear of Innovative Chondroplasty Materials against Articular Cartilage
,”
Journal of Clinical Biomechanics
,
22
(
7
), pp.
834
842
.
30.
Charnley
,
J.
, 1959, “
The Lubrication of Animal Joints
,”
Proceedings of the Symposium on Biomechanics
,
London
, Institute of Mechanical Engineers, pp.
12
22
.
31.
Basalo
,
I. M.
,
Raj
,
D.
,
Krishnan
,
R.
,
Chen
,
F. H.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2005, “
Effects of Enzymatic Degradation on the Frictional Response of Articular Cartilage in Stress Relaxation
,”
J. Biomech.
0021-9290,
38
(
6
), pp.
1343
1349
.
32.
Krishnan
,
R.
,
Kopacz
,
M.
, and
Ateshian
,
G. A.
, 2003, “
Frictional Response of Bovine Articular Cartilage Before and After Removal of the Superficial Tangential Zone
,”
Summer Bioengineering Conference
,
Key Biscayne, FL
, Paper No. 1143.
33.
Krishnan
,
R.
,
Caligaris
,
M.
,
Mauck
,
R. L.
,
Hung
,
C. T.
,
Costa
,
K. D.
, and
Ateshian
,
G. A.
, 2004, “
Removal of the Superficial Zone of Bovine Articular Cartilage Does Not Increase Its Frictional Coefficient
,”
Osteoarthritis Cartilage
1063-4584,
12
(
12
), pp.
947
955
.
34.
Schmidt
,
T. A.
,
Gastelum
,
N. S.
,
Nguyen
,
Q. T.
,
Schumacher
,
B. L.
, and
Sah
,
R. L.
, 2007, “
Boundary Lubrication of Articular Cartilage: Role of Synovial Fluid Constituents
,”
Arthritis Rheum.
0004-3591,
56
(
3
), pp.
882
891
.
35.
Graindorge
,
S. L.
, and
Stachowiak
,
G. W.
, 2000, “
Changes Occurring in the Surface Morphology of Articular Cartilage During Wear
,”
Wear
0043-1648,
241
, pp.
143
150
.
36.
Covert
,
R. J.
,
Ott
,
R. D.
, and
Ku
,
D. N.
, 2003, “
Friction Characteristics of a Potential Articular Cartilage Biomaterial
,”
Wear
0043-1648,
255
, pp.
1064
1068
.
37.
Choi
,
J.
,
Lozynsky
,
A. J.
,
Tong
,
A.
, and
Muratoglu
,
O. K.
, 2006, “
Pin-on-Disk (POD) Wear Testing Model for a Synthetic Hydrogel Plug Articulating Against Animal Cartilage Misaicplasty
,”
52nd Annual Meeting of the Orthopaedic Research Society Meeting
,
Chicago, IL
, Paper No. 1434.
38.
Standard Test Method for Wear Testing of Polymeric Materials Used in Total Joint Prostheses
,” ASTM Standard F732-00, A. International, ed., ASTM International.
39.
International Organization for Standardization
, 2004, “
Implants for Surgery—Wear of Total Knee-Joint Prostheses—Part 3: Loading and Displacement Parameters for Wear-Testing Machines With Displacement Control and Corresponding Environmental Conditions for Test
,” ISO 14243-3, I. Standard, ed., International Standard.
40.
Shields
,
K. J.
,
Owen
,
J. R.
, and
Wayne
,
J. S.
, 2007, “
Evaluation of Biomechanical and Frictional Properties of Articular Cartilage With Implanted Tissue Engineered Constructs Under a New Wear Regime
,”
54th Orthopaedic Research Society Meeting
,
Orthopaedic Research Society
,
San Diego, CA
.
41.
Shields
,
K. J.
,
Owen
,
J. R.
, and
Wayne
,
J. S.
, 2007, “
Frictional Characteristics and Tissue Loss of Articular Cartilage Under a Novel Wear Regime
,”
ASME Summer Bioengineering Conference
,
ASME
,
Keystone, CO
.
42.
American Society for Testing Materials
, F732-00, A. S., “
Standard Test Method for Wear Testing of Polymeric Materials Used in Total Joint Prostheses
,” ASTM.
43.
Jurvelin
,
J. S.
,
Rasanen
,
T.
,
Kolmonen
,
P.
, and
Lyyra
,
T.
, 1995, “
Comparison of Optical, Needle Probe and Ultrasonic Techniques for the Measurement of Articular Cartilage Thickness
,”
J. Biomech.
0021-9290,
28
(
2
), pp.
231
235
.
44.
Fortin
,
M.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Hunziker
,
E. B.
, and
Buschmann
,
M. D.
, 2000, “
Unconfined Compression of Articular Cartilage: Nonlinear Behavior and Comparison With a Fibril-Reinforced Biphasic Model
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
2
), pp.
189
195
.
45.
Buschmann
,
M. D.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Jurvelin
,
J. S.
, and
Hunziker
,
E. B.
, 1998, “
Confined Compression of Articular Cartilage: Linearity in Ramp and Sinusoidal Tests and the Importance of Interdigitation and Incomplete Confinement
,”
J. Biomech.
0021-9290,
31
(
2
), pp.
171
178
.
46.
Huang
,
C. Y.
,
Soltz
,
M. A.
,
Kopacz
,
M.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
, 2003, “
Experimental Verification of the Roles of Intrinsic Matrix Viscoelasticity and Tension-Compression Nonlinearity in the Biphasic Response of Cartilage
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
1
), pp.
84
93
.
47.
Gratz
,
K. R.
, and
Sah
,
R. L.
, 2008, “
Experimental Measurement and Quantification of Frictional Contact Between Biological Surfaces Experiencing Large Deformation and Slip
,”
J. Biomech.
0021-9290,
41
(
6
), pp.
1333
1340
.
48.
Abramowitch
,
S. D.
, and
Woo
,
S. L.
, 2004, “
An Improved Method to Analyze the Stress Relaxation of Ligaments Following a Finite Ramp Time Based on the Quasi-Linear Viscoelastic Theory
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
1
), pp.
92
97
.
49.
Lee
,
R. C.
,
Frank
,
E. H.
,
Grodzinsky
,
A. J.
, and
Roylance
,
D. K.
, 1981, “
Oscillatory Compressional Behavior of Articular Cartilage and Its Associated Electromechanical Properties
,”
ASME J. Biomech. Eng.
0148-0731,
103
(
4
), pp.
280
292
.
50.
Ballantine
,
G. C.
, and
Stachowiak
,
G. W.
, 2002, “
The Effects of Lipid Depletion on Osteoarthritic Wear
,”
Wear
0043-1648,
253
, pp.
385
393
.
51.
Stachowiak
,
G. P.
,
Stachowiak
,
G. W.
, and
Podsiadlo
,
P.
, 2006, “
Automated Classification of Articular Cartilage Surfaces Based on Surface Texture
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
220
(
8
), pp.
831
843
.
52.
Jones
,
C.
,
Stoffel
,
K.
,
Ozturk
,
H.
, and
Stachowiak
,
G. W.
, 2004, “
The Effect of Surface Active Phospholipids on the Lubricant of Osteoarthritic Sheep Knee Joints: Wear
,”
Tribol. Lett.
1023-8883,
16
(
4
), pp.
291
296
.
53.
Abramowitch
,
S. D.
,
Woo
,
S. L.
,
Clineff
,
T. D.
, and
Debski
,
R. E.
, 2004, “
An Evaluation of the Quasi-Linear Viscoelastic Properties of the Healing Medial Collateral Ligament in a Goat Model
,”
Ann. Biomed. Eng.
0090-6964,
32
(
3
), pp.
329
335
.
54.
Woo
,
S. L.
,
Gomez
,
M. A.
, and
Akeson
,
W. H.
, 1981, “
The Time and History-Dependent Viscoelastic Properties of the Canine Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
0148-0731,
103
(
4
), pp.
293
298
.
55.
Kwan
,
M. K.
,
Lin
,
T. H.
, and
Woo
,
S. L.
, 1993, “
On the Viscoelastic Properties of the Anteromedial Bundle of the Anterior Cruciate Ligament
,”
J. Biomech.
0021-9290,
26
(
4–5
), pp.
447
452
.
56.
Woo
,
S. L.
,
Peterson
,
R. H.
,
Ohland
,
K. J.
,
Sites
,
T. J.
, and
Danto
,
M. I.
, 1990, “
The Effects of Strain Rate on the Properties of the Medial Collateral Ligament in Skeletally Immature and Mature Rabbits: A Biomechanical and Histological Study
,”
J. Orthop. Res.
0736-0266,
8
(
5
), pp.
712
721
.
57.
Naredo
,
E.
,
Acebes
,
C.
,
Möller
,
I.
,
Canillas
,
E.
,
de Agustín
,
J. J.
,
de Miguel
,
E.
,
Filippucci
,
E.
,
Iagnocco
,
A.
,
Moragues
,
C.
,
Tuneu
,
R.
,
Uson
,
J.
,
Garrido
,
J.
,
Delgado-Baeza
,
E.
, and
Saenz-Navarro
,
I.
, 2008, “
Ultrasound Validity in the Measurement of Knee Cartilage Thickness
,”
Ann. Rheum. Dis.
0003-4967, published online, doi: 10.1136/ard.2008.090738.
58.
Wyler
,
A.
,
Bousson
,
V.
,
Bergot
,
C.
,
Polivka
,
M.
,
Leveque
,
E.
,
Vicaut
,
E.
, and
Laredo
,
J. D.
, 2009, “
Comparison of MR-Arthrography and CT-Arthrography in Hyaline Cartilage-Thickness Measurement in Radiographically Normal Cadaver Hips With Anatomy as Gold Standard
,”
Osteoarthritis Cartilage
1063-4584,
17
(
1
), pp.
19
25
.
59.
Kennedy
,
E. A.
,
Tordonado
,
D. S.
, and
Duma
,
S. M.
, 2007, “
Effects of Freezing on the Mechanical Properties of Articular Cartilage
,”
Biomed. Sci. Instrum.
0067-8856,
43
, pp.
342
347
.
60.
Willett
,
T. L.
,
Whiteside
,
R.
,
Wild
,
P. M.
,
Wyss
,
U. P.
, and
Anastassiades
,
T.
, 2005, “
Artefacts in the Mechanical Characterization of Porcine Articular Cartilage Due to Freezing
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
219
(
1
), pp.
23
29
.
You do not currently have access to this content.