Looping is a crucial early phase during heart development, as the initially straight heart tube (HT) deforms into a curved tube to lay out the basic plan of the mature heart. This paper focuses on the first phase of looping, called c-looping, when the HT bends ventrally and twists dextrally (rightward) to create a c-shaped tube. Previous research has shown that bending is an intrinsic process, while dextral torsion is likely caused by external forces acting on the heart. However, the specific mechanisms that drive and regulate looping are not yet completely understood. Here, we present new experimental data and finite element models to help define these mechanisms for the torsional component of c-looping. First, with regions of growth and contraction specified according to experiments on chick embryos, a three-dimensional model exhibits morphogenetic deformation consistent with observations for normal looping. Next, the model is tested further using experiments in which looping is perturbed by removing structures that exert forces on the heart—a membrane (splanchnopleure (SPL)) that presses against the ventral surface of the heart and the left and right primitive atria. In all cases, the model predicts the correct qualitative behavior. Finally, a two-dimensional model of the HT cross section is used to study a feedback mechanism for stress-based regulation of looping. The model is tested using experiments in which the SPL is removed before, during, and after c-looping. In each simulation, the model predicts the correct response. Hence, these models provide new insight into the mechanical mechanisms that drive and regulate cardiac looping.

1.
Manner
,
J.
, 2000, “
Cardiac Looping in the Chick Embryo: A Morphological Review With Special Reference to Terminological and Biomechanical Aspects of the Looping Process
,”
Anat. Rec.
0003-276X,
259
, pp.
248
262
.
2.
Latacha
,
K. S.
,
Remond
,
M. C.
,
Ramasubramanian
,
A.
,
Chen
,
A. Y.
,
Elson
,
E. L.
, and
Taber
,
L. A.
, 2005, “
The Role of Actin Polymerization in Bending of the Early Heart Tube
,”
Dev. Dyn.
1058-8388,
233
, pp.
1272
1286
.
3.
Voronov
,
D. A.
,
Alford
,
P. W.
,
Xu
,
G.
, and
Taber
,
L. A.
, 2004, “
The Role of Mechanical Forces in Dextral Rotation During Cardiac Looping in the Chick Embryo
,”
Dev. Biol.
0012-1606,
272
, pp.
339
350
.
4.
Ramasubramanian
,
A.
,
Latacha
,
K. S.
,
Benjamin
,
J. M.
,
Voronov
,
D. A.
,
Ravi
,
A.
, and
Taber
,
L. A.
, 2006, “
Computational Model for Early Cardiac Looping
,”
Ann. Biomed. Eng.
0090-6964,
34
, pp.
1355
1369
.
5.
Nerurkar
,
N. L.
,
Ramasubramanian
,
A.
, and
Taber
,
L. A.
, 2006, “
Morphogenetic Adaptation of the Looping Embryonic Heart to Altered Mechanical Loads
,”
Dev. Dyn.
1058-8388,
235
, pp.
1822
1829
.
6.
Hamburger
,
V.
, and
Hamilton
,
H. L.
, 1951, “
A Series of Normal Stages in the Development of the Chick Embryo
,”
J. Morphol.
0362-2525,
88
, pp.
49
92
.
7.
Voronov
,
D. A.
, and
Taber
,
L. A.
, 2002, “
Cardiac Looping in Experimental Conditions: The Effects of Extraembryonic Forces
,”
Dev. Dyn.
1058-8388,
224
, pp.
413
421
.
8.
Zamir
,
E. A.
,
Srinivasan
,
V.
,
Perucchio
,
R.
, and
Taber
,
L. A.
, 2003, “
Mechanical Asymmetry in the Embryonic Chick Heart During Looping
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
1327
1336
.
9.
Remond
,
M. C.
, 2006, “
Mechanics of the Actomyosin Cytoskeleton During Looping of the Embryonic Chick Heart
,” Ph.D. thesis, Washington University, St. Louis, MO.
10.
Zamir
,
E. A.
, and
Taber
,
L. A.
, 2004, “
Mechanical Properties and Residual Stress in the Stage 12 Chick Heart
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
823
830
.
11.
Straight
,
A. F.
,
Cheung
,
A.
,
Limouze
,
J.
,
Chen
,
I.
,
Westwood
,
N. J.
,
Sellers
,
J. R.
, and
Mitchison
,
T. J.
, 2003, “
Dissecting Temporal and Spatial Control of Cytokinesis With a Myosin II Inhibitor
,”
Science
,
299
, pp.
1743
1747
. 0036-8075
12.
Fujimoto
,
J. G.
, 2003, “
Optical Coherence Tomography for Ultrahigh Resolution In Vivo Imaging
,”
Nat. Biotechnol.
1087-0156,
21
, pp.
1361
1367
.
13.
Jenkins
,
M. W.
,
Rothenberg
,
F.
,
Roy
,
D.
,
Nikolski
,
V. P.
,
Hu
,
Z.
,
Watanabe
,
M.
,
Wilson
,
D. L.
,
Efimov
,
I. R.
, and
Rollins
,
A. M.
, 2006, “
4d Embryonic Cardiography Using Gated Optical Coherence Tomography
,”
Opt. Express
,
14
, pp.
736
748
. 1094-4087
14.
Ramasubramanian
,
A.
, and
Taber
,
L. A.
, 2007, “
Computational Modeling of Morphogenesis Regulated by Mechanical Feedback
,”
Biomech. Model. Mechanobiol.
,
7
, pp.
77
91
. 1617-7959
15.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
, 1994, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
0021-9290,
27
, pp.
455
467
.
16.
Taber
,
L. A.
, 1995, “
Biomechanics of Growth, Remodeling, and Morphogenesis
,”
Appl. Mech. Rev.
,
48
, pp.
487
545
. 0003-6900
17.
Taber
,
L. A.
, 2001, “
Biomechanics of Cardiovascular Development
,”
Annu. Rev. Biomed. Eng.
1523-9829,
3
, pp.
1
25
.
18.
Taber
,
L. A.
, 2004,
Nonlinear Theory of Elasticity
,
World Scientific
,
Singapore
.
19.
Itasaki
,
N.
,
Nakamura
,
H.
, and
Yasuda
,
M.
, 1989, “
Changes in the Arrangement of Actin Bundles During Heart Looping in the Chick Embryo
,”
Anat. Embryol. (Berl)
,
180
, pp.
413
420
. 0340-2061
20.
Shiraishi
,
I.
,
Takamatsu
,
T.
,
Minamikawa
,
T.
, and
Fujita
,
S.
, 1992, “
3-D Observation of Actin Filaments During Cardiac Myofibrinogenesis in Chick Embryo Using a Confocal Laser Scanning Microscope
,”
Anat. Embryol. (Berl)
,
185
, pp.
401
408
. 0340-2061
21.
Filas
,
B. A.
,
Efimov
,
I. R.
, and
Taber
,
L. A.
, 2007, “
Optical Coherence Tomography as a Tool for Measuring Morphogenetic Deformation of the Looping Heart
,”
Anat. Rec.
0003-276X,
290
, pp.
1057
1068
.
22.
Taber
,
L. A.
, 2006, “
Biophysical Mechanisms of Cardiac Looping
,”
Int. J. Dev. Biol.
,
50
, pp.
323
332
. 0214-6282
23.
Beloussov
,
L. V.
, 1998,
The Dynamic Architecture of a Developing Organism: An Interdisciplinary Approach to the Development of Organisms
,
Kluwer
,
Dordrecht, The Netherlands
.
24.
Holzapfel
,
G. A.
, 2001,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
New York
.
25.
Harvey
,
R. P.
, 1998, “
Cardiac Looping–an Uneasy Deal With Laterality
,”
Semin Cell Dev. Biol.
,
9
, pp.
101
108
. 1084-9521
26.
Srivastava
,
D.
, and
Olson
,
E. N.
, 1997, “
Knowing in Your Heart What’s Right
,”
Trends Cell Biol.
,
7
, pp.
447
453
. 0962-8924
27.
Mercola
,
M.
, and
Levin
,
M.
, 2001, “
Left-Right Asymmetry Determination in the Vertebrates
,”
Annu. Rev. Cell Dev. Biol.
,
17
, pp.
779
805
. 1081-0706
28.
Brand
,
T.
, 2003, “
Heart Development: Molecular Insights Into Cardiac Specification and Early Morphogenesis
,”
Dev. Biol.
,
258
, pp.
1
19
. 0012-1606
29.
Okada
,
Y.
,
Nonaka
,
S.
,
Tanaka
,
Y.
,
Saijoh
,
Y.
,
Hamada
,
H.
, and
Hirokawa
,
N.
, 1999, “
Abnormal Nodal Flow Precedes Situs Inversus in iv and inv Mice
,”
Mol. Cell
1097-2765,
4
, pp.
459
468
.
30.
Linask
,
K. K.
, 2003, “
Regulation of Heart Morphology: Current Molecular and Cellular Perspectives on the Coordinated Emergence of Cardiac Form and Function
,”
Birth Defects Orig Artic Ser.
0547-6844,
69
, pp.
14
24
.
31.
Miller
,
C. E.
,
Vanni
,
M. A.
,
Taber
,
L. A.
, and
Keller
,
B. B.
, 1997, “
Passive Stress-Strain Measurements in the Stage-16 and Stage-18 Embryonic Chick Heart
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
445
451
.
32.
Miller
,
C. E.
,
Vanni
,
M. A.
, and
Keller
,
B. B.
, 1997, “
Characterization of Passive Embryonic Myocardium by Quasi-Linear Viscoelasticity Theory
,”
J. Biomech.
0021-9290,
30
, pp.
985
988
.
33.
Miller
,
C. E.
, and
Wong
,
C. L.
, 2000, “
Trabeculated Embryonic Myocardium Shows Rapid Stress Relaxation and Non-Quasi-Linear Viscoelastic Behavior
,”
J. Biomech.
0021-9290,
33
, pp.
615
622
.
34.
Ling
,
P.
,
Taber
,
L. A.
, and
Humphrey
,
J. D.
, 2002, “
Approach to Quantify the Mechanical Behavior of the Intact Embryonic Chick Heart
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
636
645
.
35.
Miller
,
C. E.
, and
Wong
,
C. L.
, 2003, “
Pressure Overload Alters Stress-Strain Properties of the Developing Chick Heart
,”
Am. J. Physiol.
,
285
, pp.
H1849
H1856
. 0002-9513
36.
Lacktis
,
J. W.
, and
Manasek
,
F. J.
, 1978, “
An Analysis of Deformation During a Normal Morphogenetic Event
,”
Birth Defects Orig Artic Ser.
,
14
, pp.
205
227
. 0547-6844
37.
Zamir
,
E. A.
, and
Taber
,
L. A.
, 2004, “
On the Effects of Residual Stress in Microindentation Tests of Soft Tissue Structures
,”
ASME J. Biomech. Eng.
0148-0731,
126
, pp.
276
283
.
38.
Taber
,
L. A.
, 2007, “
Theoretical Study of Beloussov’s Hyper-Restoration Hypothesis for Mechanical Regulation of Morphogenesis
,”
Biomech. Model. Mechanobiol.
,
7
, pp.
427
441
. 1617-7959
39.
Linask
,
K. K.
,
Han
,
M.
,
Cai
,
D. H.
,
Brauer
,
P. R.
, and
Manisastry
,
S. M.
, 2005, “
Cardiac Morphogenesis: Matrix Metalloproteinase Coordination of Cellular Mechanisms Underlying Heart Tube Formation and Directionality of Looping
,”
Dev. Dyn.
,
233
, pp.
739
753
. 1058-8388
You do not currently have access to this content.