While much work has previously been done in the modeling of skeletal muscle, no model has, to date, been developed that describes the mechanical behavior with an explicit strain-energy function associated with the active response of skeletal muscle tissue. A model is presented herein that has been developed to accommodate this design consideration using a robust dynamical approach. The model shows excellent agreement with a previously published model of both the active and passive length-tension properties of skeletal muscle.

1.
Blix
,
M.
, 1894, “
Die Langrund dei Spennung des Muskels
,”
Skand. Arch. Physiol.
,
5
, pp.
149
206
.
2.
Hill
,
A. V.
, 1938, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London, Ser. B
0962-8452,
126
, pp.
136
195
.
3.
Zajac
,
F. E.
, 1989, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
0278-940X,
17
(
4
), pp.
359
411
.
4.
Delp
,
S. L.
, and
Loan
,
J. P.
, 1995, “
A Graphics-Based Software System to Develop and Analyze Models of Musculoskeletal Structures
,”
Comput. Biol. Med.
0010-4825,
25
(
1
), pp.
21
34
.
5.
Kaufman
,
K. R.
,
An
,
K. W.
,
Litchy
,
W. J.
, and
Chao
,
E. Y.
, 1991, “
Physiology Prediction of Muscle Forces—I: Theoretical Formulation
,”
Neuroscience
0306-4522,
40
(
3
), pp.
781
792
.
6.
Buchanan
,
T. S.
,
Lloyd
,
D. G.
,
Manal
,
K.
, and
Besier
,
T. F.
, 2005, “
Estimation of Muscle Forces and Joint Moments Using a Forward-Inverse Dynamics Model
,”
Med. Sci. Sports Exercise
0195-9131,
37
(
11
), pp.
1911
1916
.
7.
Van der Linden
,
B. J. J. J.
,
Koopman
,
H. F. J. M.
,
Huijing
,
P. A.
, and
Grootenborer
,
H. J.
, 1998, “
Revised Planimetric Model of Unipennate Skeletal Muscle: A Mechanical Approach
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
13
(
4–5
), pp.
256
260
.
8.
Van der Linden
,
B. J. J. J.
, 1998, “
Mechanical Modeling of Skeletal Muscle Functioning
,” Ph.D. thesis University of Twente, The Netherlands.
9.
Jenkyn
,
T. R.
,
Koopman
,
B.
,
Huijing
,
P.
,
Lieber
,
R. L.
, and
Kaufman
,
K. R.
, 2002, “
Finite Element Model of Intramuscular Pressure During Isometric Contraction of Skeletal Muscle
,”
Phys. Med. Biol.
0031-9155,
47
, pp.
4043
4061
.
10.
Martins
,
J. A. C.
,
Pires
,
E. B.
,
Salvado
,
R.
, and
Dinis
,
P. B.
, 1998, “
A Numerical Model of Passive and Active Behavior of Skeletal Muscles
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
151
, pp.
419
433
.
11.
Gielen
,
A. W. J.
,
Oomens
,
C. W. J.
,
Bovendeerd
,
P. H. M.
,
Arts
,
T.
, and
Janssen
,
J. D.
, 2000, “
A Finite Element Approach for Skeletal Muscle Using a Distributed Moment Model of Contraction
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
3
, pp.
231
244
.
12.
Johansson
,
T.
,
Meier
,
P.
, and
Blickman
,
R.
, 2000, “
A Finite-Element Model for the Mechanical Analysis of Skeletal Muscles
,”
J. Theor. Biol.
0022-5193,
206
, pp.
131
149
.
13.
Yucesoy
,
C. A.
,
Koopman
,
B.
,
Huijing
,
P. A.
, and
Grootenboer
,
H. J.
, 2002, “
Three-Dimensional Finite Element Modeling of Skeletal Muscle Using a Two-Domain Approach: Linked Fiber-Matrix Mesh Model
,”
J. Biomech.
0021-9290,
35
, pp.
1253
1262
.
14.
Blemker
,
S. S.
,
Pinsky
,
P. M.
, and
Delp
,
S.
, 2005, “
A 3D Model of Muscle Reveals the Causes of Nonuniform Strains in the Biceps Brachii
,”
J. Biomech.
0021-9290,
38
, pp.
657
665
.
15.
McMahon
,
T. A.
, 1984,
Muscles, Reflexes, and Locomotion
,
Princeton University Press
,
Princeton, NJ
.
16.
Cobb
,
M.
, 2002, “
Timeline: Exorcizing the Animal Spirits: Jan Swammerdam on Nerve Function
,”
Nat. Rev. Neurosci.
1471-003X,
3
(
5
), pp.
395
400
.
17.
Coleman
,
B. D.
, and
Gurtin
,
M. E.
, 1967, “
Thermodynamics with Internal State Variables
,”
J. Chem. Phys.
0021-9606,
47
(
2
), pp.
597
613
.
18.
Valavala
,
P. K.
,
Clancy
,
T. C.
,
Odegard
,
G. M.
, and
Gates
,
T. S.
, 2007, “
Nonlinear Multiscale Modeling of Polymer Materials
,”
Int. J. Solids Struct.
0020-7683,
44
(
3–4
), pp.
1161
1179
.
19.
Hill
,
R.
, 1963, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
357
372
.
20.
Hashin
,
Z.
, and
Rosen
,
B. W.
, 1964, “
The Elastic Moduli of Fiber-Reinforced Materials
,”
ASME J. Appl. Mech.
0021-8936,
31
, pp.
223
232
.
21.
Noor
,
A. K.
, 1988, “
Continuum Modeling for Repetitive Lattice Structures
,”
Appl. Mech. Rev.
0003-6900,
41
(
7
), pp.
285
296
.
22.
Truesdell
,
C.
, and
Noll
,
W.
, 2004,
The Non-Linear Field Theories of Mechanics
,
Springer-Verlag
,
New York
.
23.
Truesdell
,
C. A.
, and
Toupin
,
R. A.
, 1960, “
The Classical Field Theories
,”
Encyclopedia of Physics, Volume III∕1: Principals of Classical Mechanics and Field Theory
,
S.
Flugge
, ed.,
Springer-Verlag
,
Berlin, Germany
.
24.
Eringen
,
A. C.
, 1967,
Mechanics of Continua
,
Wiley
,
New York
.
25.
Itskov
,
M.
, and
Aksel
,
N.
, 2004, “
A Class of Orthotropic and Transversely Isotropic Hyperelastic Constitutive Models Based on a Polyconvex Strain Energy Function
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
3833
3848
.
26.
Schroder
,
J.
, and
Neff
,
P.
, 2003, “
Invariant Formulation of Hyperelastic Transverse Isotropy Based on Polyconvex Free Energy Functions
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
401
445
.
27.
Ball
,
J. M.
, 1977, “
Convexity Conditions and Existence Theorems in Nonlinear Elasticity
,”
Arch. Ration. Mech. Anal.
0003-9527,
63
, pp.
337
403
.
28.
Leiber
,
R. L.
, 2002,
Skeletal Muscle Structure, Function and Plasticity: The Physiological Basis of Rehabilitation
,
Lippincott Williams and Wilkins
,
New York
.
29.
Powell
,
P. L.
,
Roy
,
R. R.
,
Kanim
,
P.
,
Bello
,
M. A.
, and
Edgerton
,
V. R.
, 1984, “
Predictability of Skeletal Muscle Tension From Architectural Determinations in Guinea Pig Hindlimbs
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
0161-7567,
57
(
6
), pp.
1715
1721
.
30.
Fukunaga
,
T.
,
Roy
,
R. R.
,
Shellock
,
F. G.
,
Hodgson
,
J. A.
, and
Edgerton
,
V. R.
, 1996, “
Specific Tension of Human Plantar Flexors and Dorsiflexors
,”
J. Appl. Physiol.
8750-7587,
80
(
1
), pp.
158
165
.
31.
Bathe
,
K. J.
, 1996,
Finite Element Procedures
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
32.
Butterfield
,
T. A.
, and
Herzog
,
W.
, 2005, “
Quantification of Muscle Fiber Strain During In Vivo Repetitive Stretch-Shortening Cycles
,”
J. Appl. Physiol.
8750-7587,
99
(
2
), pp.
593
602
.
33.
Butterfield
,
T. A.
, and
Herzog
,
W.
, 2006, “
Effect of Altering Starting Length and Activation Timing of Muscle on Fiber Strain and Muscle Damage
,”
J. Appl. Physiol.
8750-7587,
100
(
5
), pp.
1489
1498
.
34.
Talreja
,
R.
, 1990, “
Internal Variable Damage Mechanics of Composite Materials
,”
Yielding, Damage, and Failure of Anisotropic Solids
,
J. P.
Boehler
, ed.,
Mechanical Engineering
,
London
, pp.
509
533
.
35.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
, 1994, “
Micromechanical Modeling of Damage and Plasticity in Continuously Reinforced MMCs
,”
Inelasticity and Micromechanics of Metal Matrix Composites
,
G. Z.
Voyiadjis
and
J. W.
Ju
, eds.,
Elsevier
,
Kidlington, UK
.
36.
Ladeveze
,
P.
, 1994, “
Inelastic Strains and Damage
,”
Damage Mechanics of Composite Materials
,
R.
Talreja
, ed.,
Elsevier
,
Kidlington, UK
.
37.
Ju
,
J. W.
, 1990, “
Isotropic and Anisotropic Damage Variables in Continuum Damage Mechanics
,”
J. Eng. Mech.
0733-9399,
116
(
12
), pp.
2764
2770
.
38.
Allen
,
D. H.
,
Harris
,
C. E.
, and
Groves
,
S. E.
, 1987, “
A Thermomechanical Constitutive Theory for Elastic Composites With Distributed Damage—I. Theoretical Development
,”
Int. J. Solids Struct.
0020-7683,
23
(
9
), pp.
1301
1318
.
You do not currently have access to this content.