While much work has previously been done in the modeling of skeletal muscle, no model has, to date, been developed that describes the mechanical behavior with an explicit strain-energy function associated with the active response of skeletal muscle tissue. A model is presented herein that has been developed to accommodate this design consideration using a robust dynamical approach. The model shows excellent agreement with a previously published model of both the active and passive length-tension properties of skeletal muscle.
Issue Section:
Research Papers
1.
Blix
, M.
, 1894, “Die Langrund dei Spennung des Muskels
,” Skand. Arch. Physiol.
, 5
, pp. 149
–206
.2.
Hill
, A. V.
, 1938, “The Heat of Shortening and the Dynamic Constants of Muscle
,” Proc. R. Soc. London, Ser. B
0962-8452, 126
, pp. 136
–195
.3.
Zajac
, F. E.
, 1989, “Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,” Crit. Rev. Biomed. Eng.
0278-940X, 17
(4
), pp. 359
–411
.4.
Delp
, S. L.
, and Loan
, J. P.
, 1995, “A Graphics-Based Software System to Develop and Analyze Models of Musculoskeletal Structures
,” Comput. Biol. Med.
0010-4825, 25
(1
), pp. 21
–34
.5.
Kaufman
, K. R.
, An
, K. W.
, Litchy
, W. J.
, and Chao
, E. Y.
, 1991, “Physiology Prediction of Muscle Forces—I: Theoretical Formulation
,” Neuroscience
0306-4522, 40
(3
), pp. 781
–792
.6.
Buchanan
, T. S.
, Lloyd
, D. G.
, Manal
, K.
, and Besier
, T. F.
, 2005, “Estimation of Muscle Forces and Joint Moments Using a Forward-Inverse Dynamics Model
,” Med. Sci. Sports Exercise
0195-9131, 37
(11
), pp. 1911
–1916
.7.
Van der Linden
, B. J. J. J.
, Koopman
, H. F. J. M.
, Huijing
, P. A.
, and Grootenborer
, H. J.
, 1998, “Revised Planimetric Model of Unipennate Skeletal Muscle: A Mechanical Approach
,” Clin. Biomech. (Bristol, Avon)
0268-0033, 13
(4–5
), pp. 256
–260
.8.
Van der Linden
, B. J. J. J.
, 1998, “Mechanical Modeling of Skeletal Muscle Functioning
,” Ph.D. thesis University of Twente, The Netherlands.9.
Jenkyn
, T. R.
, Koopman
, B.
, Huijing
, P.
, Lieber
, R. L.
, and Kaufman
, K. R.
, 2002, “Finite Element Model of Intramuscular Pressure During Isometric Contraction of Skeletal Muscle
,” Phys. Med. Biol.
0031-9155, 47
, pp. 4043
–4061
.10.
Martins
, J. A. C.
, Pires
, E. B.
, Salvado
, R.
, and Dinis
, P. B.
, 1998, “A Numerical Model of Passive and Active Behavior of Skeletal Muscles
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 151
, pp. 419
–433
.11.
Gielen
, A. W. J.
, Oomens
, C. W. J.
, Bovendeerd
, P. H. M.
, Arts
, T.
, and Janssen
, J. D.
, 2000, “A Finite Element Approach for Skeletal Muscle Using a Distributed Moment Model of Contraction
,” Comput. Methods Biomech. Biomed. Eng.
1025-5842, 3
, pp. 231
–244
.12.
Johansson
, T.
, Meier
, P.
, and Blickman
, R.
, 2000, “A Finite-Element Model for the Mechanical Analysis of Skeletal Muscles
,” J. Theor. Biol.
0022-5193, 206
, pp. 131
–149
.13.
Yucesoy
, C. A.
, Koopman
, B.
, Huijing
, P. A.
, and Grootenboer
, H. J.
, 2002, “Three-Dimensional Finite Element Modeling of Skeletal Muscle Using a Two-Domain Approach: Linked Fiber-Matrix Mesh Model
,” J. Biomech.
0021-9290, 35
, pp. 1253
–1262
.14.
Blemker
, S. S.
, Pinsky
, P. M.
, and Delp
, S.
, 2005, “A 3D Model of Muscle Reveals the Causes of Nonuniform Strains in the Biceps Brachii
,” J. Biomech.
0021-9290, 38
, pp. 657
–665
.15.
McMahon
, T. A.
, 1984, Muscles, Reflexes, and Locomotion
, Princeton University Press
, Princeton, NJ
.16.
Cobb
, M.
, 2002, “Timeline: Exorcizing the Animal Spirits: Jan Swammerdam on Nerve Function
,” Nat. Rev. Neurosci.
1471-003X, 3
(5
), pp. 395
–400
.17.
Coleman
, B. D.
, and Gurtin
, M. E.
, 1967, “Thermodynamics with Internal State Variables
,” J. Chem. Phys.
0021-9606, 47
(2
), pp. 597
–613
.18.
Valavala
, P. K.
, Clancy
, T. C.
, Odegard
, G. M.
, and Gates
, T. S.
, 2007, “Nonlinear Multiscale Modeling of Polymer Materials
,” Int. J. Solids Struct.
0020-7683, 44
(3–4
), pp. 1161
–1179
.19.
Hill
, R.
, 1963, “Elastic Properties of Reinforced Solids: Some Theoretical Principles
,” J. Mech. Phys. Solids
0022-5096, 11
, pp. 357
–372
.20.
Hashin
, Z.
, and Rosen
, B. W.
, 1964, “The Elastic Moduli of Fiber-Reinforced Materials
,” ASME J. Appl. Mech.
0021-8936, 31
, pp. 223
–232
.21.
Noor
, A. K.
, 1988, “Continuum Modeling for Repetitive Lattice Structures
,” Appl. Mech. Rev.
0003-6900, 41
(7
), pp. 285
–296
.22.
Truesdell
, C.
, and Noll
, W.
, 2004, The Non-Linear Field Theories of Mechanics
, Springer-Verlag
, New York
.23.
Truesdell
, C. A.
, and Toupin
, R. A.
, 1960, “The Classical Field Theories
,” Encyclopedia of Physics, Volume III∕1: Principals of Classical Mechanics and Field Theory
, S.
Flugge
, ed., Springer-Verlag
, Berlin, Germany
.24.
Eringen
, A. C.
, 1967, Mechanics of Continua
, Wiley
, New York
.25.
Itskov
, M.
, and Aksel
, N.
, 2004, “A Class of Orthotropic and Transversely Isotropic Hyperelastic Constitutive Models Based on a Polyconvex Strain Energy Function
,” Int. J. Solids Struct.
0020-7683, 41
, pp. 3833
–3848
.26.
Schroder
, J.
, and Neff
, P.
, 2003, “Invariant Formulation of Hyperelastic Transverse Isotropy Based on Polyconvex Free Energy Functions
,” Int. J. Solids Struct.
0020-7683, 40
, pp. 401
–445
.27.
Ball
, J. M.
, 1977, “Convexity Conditions and Existence Theorems in Nonlinear Elasticity
,” Arch. Ration. Mech. Anal.
0003-9527, 63
, pp. 337
–403
.28.
Leiber
, R. L.
, 2002, Skeletal Muscle Structure, Function and Plasticity: The Physiological Basis of Rehabilitation
, Lippincott Williams and Wilkins
, New York
.29.
Powell
, P. L.
, Roy
, R. R.
, Kanim
, P.
, Bello
, M. A.
, and Edgerton
, V. R.
, 1984, “Predictability of Skeletal Muscle Tension From Architectural Determinations in Guinea Pig Hindlimbs
,” J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
0161-7567, 57
(6
), pp. 1715
–1721
.30.
Fukunaga
, T.
, Roy
, R. R.
, Shellock
, F. G.
, Hodgson
, J. A.
, and Edgerton
, V. R.
, 1996, “Specific Tension of Human Plantar Flexors and Dorsiflexors
,” J. Appl. Physiol.
8750-7587, 80
(1
), pp. 158
–165
.31.
Bathe
, K. J.
, 1996, Finite Element Procedures
, Prentice-Hall
, Englewood Cliffs, NJ
.32.
Butterfield
, T. A.
, and Herzog
, W.
, 2005, “Quantification of Muscle Fiber Strain During In Vivo Repetitive Stretch-Shortening Cycles
,” J. Appl. Physiol.
8750-7587, 99
(2
), pp. 593
–602
.33.
Butterfield
, T. A.
, and Herzog
, W.
, 2006, “Effect of Altering Starting Length and Activation Timing of Muscle on Fiber Strain and Muscle Damage
,” J. Appl. Physiol.
8750-7587, 100
(5
), pp. 1489
–1498
.34.
Talreja
, R.
, 1990, “Internal Variable Damage Mechanics of Composite Materials
,” Yielding, Damage, and Failure of Anisotropic Solids
, J. P.
Boehler
, ed., Mechanical Engineering
, London
, pp. 509
–533
.35.
Voyiadjis
, G. Z.
, and Kattan
, P. I.
, 1994, “Micromechanical Modeling of Damage and Plasticity in Continuously Reinforced MMCs
,” Inelasticity and Micromechanics of Metal Matrix Composites
, G. Z.
Voyiadjis
and J. W.
Ju
, eds., Elsevier
, Kidlington, UK
.36.
Ladeveze
, P.
, 1994, “Inelastic Strains and Damage
,” Damage Mechanics of Composite Materials
, R.
Talreja
, ed., Elsevier
, Kidlington, UK
.37.
Ju
, J. W.
, 1990, “Isotropic and Anisotropic Damage Variables in Continuum Damage Mechanics
,” J. Eng. Mech.
0733-9399, 116
(12
), pp. 2764
–2770
.38.
Allen
, D. H.
, Harris
, C. E.
, and Groves
, S. E.
, 1987, “A Thermomechanical Constitutive Theory for Elastic Composites With Distributed Damage—I. Theoretical Development
,” Int. J. Solids Struct.
0020-7683, 23
(9
), pp. 1301
–1318
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.