Morselized corticocancellous bone (MCB) is widely used in revision surgery with and without impaction. In the current study material parameters for the nonlinear viscoelastic and plastic responses of impacted and unimpacted human MCBs were determined during constrained compression. These models may be useful in finite element analyses of surgical constructs involving impacted and unimpacted MCBs. MCB is impacted layer by layer in the femoral canal during revision surgery. The influence of different layers on the mechanical properties was therefore also examined by comparing the relaxation strength and elastic and plastic strains for bone pellets impacted in one and two layers during constrained compression of human MCB. The relaxation strength was found to increase significantly by 14% for two layer pellets compared to one layer pellets, and the plastic strains decreased significantly by 15%, while the elastic strains were similar.

1.
Toms
,
A.
,
Barker
,
R.
,
Jones
,
R.
, and
Kuiper
,
J.
, 2004, “
Impaction Bone-Grafting in Revision Joint Replacement Surgery
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
86-A
, pp.
2050
2060
.
2.
Sloof
,
T.
,
Huiskes
,
R.
,
van Horn
,
J.
, and
Lemmens
,
A.
, 1984, “
Bone Grafting in Total Hip Replacement
,”
Acta Orthop. Scand.
0001-6470,
55
, pp.
593
596
.
3.
Gie
,
G.
,
Linder
,
L.
,
Ling
,
R.
,
Simon
,
J.
,
Slooff
,
T.
, and
Timperley
,
A.
, 1993, “
Impacted Cancellous Allografts and Cement for Revision Total Hip Arthroplasty
,”
J. Bone Joint Surg. Br.
0301-620X,
75
, pp.
14
21
.
4.
Halliday
,
B. R.
,
English
,
H. W.
,
Timparley
,
A. J.
,
Gie
,
G. A.
, and
Ling
,
R. S.
, 2003, “
Femoral Impaction Grafting With Cement in Revision Total Hip Replacement. Evolution of the Technique and Results
,”
J. Bone Joint Surg. Br.
0301-620X,
85
, pp.
809
817
.
5.
Schreurs
,
B.
,
Bolder
,
S.
,
Gardeniers
,
J.
,
Verdonschot
,
N.
,
Slooff
,
T.
, and
Veth
,
R.
, 2004, “
Acetabular Revision With Impacted Morsellised Cancellous Bone Grafting and a Cemented Cup. A 15‐to20‐Year Follow-Up
,”
J. Bone Joint Surg. Br.
0301-620X,
86
, pp.
492
497
.
6.
Ornstein
,
E.
,
Franzen
,
H.
,
Johnsson
,
R.
,
Stefansdottir
,
A.
,
Sundberg
,
M.
, and
Tagil
,
M.
, 2006, “
Five-Year Follow-Up of Socket Movements and Loosening After Revision With Impacted Morselized Allograft Bone and Cement—A Radiostereometric and Radiographic Analysis
,”
J. Arthroplasty
0883-5403,
21
, pp.
975
984
.
7.
Franzen
,
H.
,
Toksvig-Larsen
,
S.
,
Lidgren
,
L.
, and
Onnerfalt
,
R.
, 1995, “
Early Migration of Femoral Components Revised With Impacted Cancellous Allografts and Cement. a Preliminary Report of Five Patients
,”
J. Bone Joint Surg. Br.
0301-620X,
77
, pp.
862
864
.
8.
Eldridge
,
J.
,
Smith
,
E.
,
Hubble
,
M.
,
Whitehouse
,
S.
, and
Learmonth
,
I.
, 1997, “
Massive Early Subsidence Following Femoral Impaction Grafting
,”
J. Arthroplasty
0883-5403,
12
, pp.
535
540
.
9.
Masterson
,
E.
, and
Duncan
,
C.
, 1997, “
Subsidence and the Cement Mantle in Femoral Impaction Allografting
,”
Orthopedics
0147-7447,
20
, pp.
821
822
.
10.
Ornstein
,
E.
,
Atroshi
,
I.
,
Franzen
,
H.
,
Johnsson
,
R.
,
Sandquist
,
P.
, and
Sundberg
,
M.
, 2002, “
Early Complications After One Hundred and Forty-Four Consecutive Hip Revisions With Impacted Morselized Allograft Bone and Cement
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
84-A
, pp.
1323
1328
.
11.
Whiteside
,
L. A.
, 1988, “
Cementless Reconstruction of Massive Tibial Bone Loss in Revision Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
0009-921X,
248
, pp.
80
86
.
12.
Ullmark
,
G.
, and
Hovelius
,
L.
, 1996, “
Impacted Morsellized Allograft and Cement for Revision Total Knee Arthroplasty: A Preliminary Report of 3 Cases
,”
Acta Orthop. Scand.
0001-6470,
67
(
1
), pp.
10
12
.
13.
Voor
,
M.
,
Nawab
,
A.
,
Malkani
,
A.
, and
Ullrich
,
C.
, 2000, “
Mechanical Properties of Compacted Morselized Cancellous Bone Graft Using One-Dimensional Consolidation Testing
,”
J. Biomech.
0021-9290,
33
, pp.
1683
1688
.
14.
Voor
,
M.
,
White
,
J.
,
Grieshaber
,
J.
,
Malkani
,
A.
, and
Ullrich
,
C.
, 2004, “
Impacted Morselized Cancellous Bone: Mechanical Effects of Defatting and Augmentation With Fine Hydroxyapatite Particles
,”
J. Biomech.
0021-9290,
37
, pp.
1233
1239
.
15.
Fosse
,
L.
,
Muller
,
S.
,
Rønningen
,
H.
,
Irgens
,
F.
, and
Benum
,
P.
, 2006, “
Viscoelastic Modelling of Impacted Morsellised Bone Accurately Describes Unloading Behaviour: An Experimental Study of Stiffness Moduli and Recoil Properties
,”
J. Biomech.
0021-9290,
39
, pp.
2295
2303
.
16.
Fosse
,
L.
,
Rønningen
,
H.
,
Lund-Larsen
,
J.
,
Benum
,
P.
, and
Grande
,
L.
, 2004, “
Impacted Bone Stiffness Measured During Construction of Morsellised Bone Samples
,”
J. Biomech.
0021-9290,
37
, pp.
1757
1766
.
17.
Lunde
,
K. B.
,
Kaehler
,
N.
,
Rønningen
,
H.
, and
Fosse
,
L.
, 2008, “
Pressure During Compaction of Morsellised Bone Gives an Increase in Stiffness: An In Vitro Study
,”
J. Biomech.
0021-9290,
41
, pp.
231
234
.
18.
Grimm
,
B.
, 2003, “
Mechanical Properties of Morsellised Bone Graft and Synthetic Graft Extenders for Impaction Grafting
,” Ph.D. thesis, University of Bath, Bath, UK.
19.
Blom
,
A.
,
Grimm
,
B.
,
Miles
,
A.
,
Cunningham
,
J.
, and
Learmonth
,
I.
, 2002, “
Subsidence in Impaction Grafting: The Effect of Adding a Ceramic Bone Graft Extender to Bone
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
216
, pp.
265
270
.
20.
Verdonschot
,
N.
,
van Hal
,
C.
,
Schreurs
,
B.
,
Buma
,
P.
,
Huiskes
,
R.
, and
Slooff
,
T.
, 2001, “
Time-Dependent Mechanical Properties of ha∕tcp Particles in Relation to Morsellized Bone Grafts for Use in Impaction Grafting
,”
J. Biomed. Mater. Res.
0021-9304,
58
, pp.
599
604
.
21.
Lunde
,
K. B.
,
Sletmoen
,
M.
,
Stokke
,
B. T.
, and
Skallerud
,
B.
, 2008, “
The Fluid Phase of Morsellised Bone: Characterisation of Viscosity and Chemical Composition
,”
J. Mech. Behav. Biomedical Mater.
,
1
, pp.
199
205
.
22.
Madabhushi
,
S. P. G.
,
Usmani
,
A. S.
, and
Fairbairn
,
D. R.
, 1996,
Simulation Modelling in Bioengineering: Proceedings of the BIOSIM’96 Conference
(Computational Mechanics), Transaction: Biomedicine and Health, Vol. 3, pp.
165
174
.
23.
Simon
,
J. P.
,
Sloten
,
J. V.
,
Audekercke
,
R. V.
,
Perre
,
G. V. D.
,
Ling
,
R. S. M.
,
Gie
,
G. A.
, and
Fabry
,
G.
, 1998, “
Finite Element Analysis Applied to Bone Remodelling in Revision Arthroplasty of the Femur Using Morselized Allograft and Cement
,”
Hip International
,
8
, pp.
81
61
.
24.
Phillips
,
A.
,
Usmani
,
A.
, and
Howie
,
C.
, 2004, “
The Effect of Acetabular Cup Size on the Short-Term Stability of Revision Hip Arthroplasty: A Finite Element Investigation
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
218
, pp.
239
249
.
25.
Frei
,
H.
,
Gadala
,
M.
,
Masri
,
B.
,
Duncan
,
C.
, and
Oxland
,
T.
, 2006, “
Cement Flow During Impaction Allografting: A Finite Element Analysis
,”
J. Biomech.
0021-9290,
39
, pp.
493
502
.
26.
Phillips
,
A.
,
Pankaj
,
P.
,
Howie
,
C.
,
Usmani
,
A.
, and
Simpson
,
A.
, 2006, “
3d Non-Linear Analysis of the Acetabular Construct Following Impaction Grafting
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
9
, pp.
125
133
.
27.
Frei
,
H.
,
Mitchell
,
P.
,
Masri
,
B.
,
Duncan
,
C.
, and
Oxland
,
T.
, 2004, “
Allograft Impaction and Cement Penetration After Revision Hip Replacement. A Histomorphometric Analysis in the Cadaver Femur
,”
J. Bone Joint Surg. Br.
0301-620X,
86
, pp.
771
776
.
28.
Lunde
,
K. B.
, and
Skallerud
,
B.
, 2008, “
The Modified Cam Clay Model for Constrained Compression of Human Morsellised Bone: Effects of Porosity on the Mechanical Behaviour
,”
J. Mech. Behav. Biomedical Mater.
, in press.
29.
Phillips
,
A.
,
Pankaj
,
P.
,
May
,
F.
,
Taylor
,
K.
,
Howie
,
C.
, and
Usmani
,
A.
, 2006, “
Constitutive Models for Impacted Morsellised Cortico-Cancellous Bone
,”
Biomaterials
0142-9612,
27
, pp.
2162
2170
.
30.
Brewster
,
N.
,
Gillespie
,
W.
,
Howie
,
C.
,
Madabhushi
,
S.
,
Usmani
,
A.
, and
Fairbairn
,
D.
, 1999, “
Mechanical Considerations in Impaction Bone Grafting
,”
J. Bone Joint Surg. Br.
0301-620X,
81
, pp.
118
124
.
31.
Lunde
,
K. B.
,
Foss
,
O.
, and
Skallerud
,
B.
, 2008, “
On the Applicability of Bovine Morsellised Cortico-Cancellous Bone as a Substitute for Human Morsellised Cortico-Cancellous Bone for in Vitro Mechanical Testing
,”
J. Biomech.
0021-9290, submitted.
32.
2006, ABAQUS, Version 6.6 documentation (http://www.abaqus.comhttp://www.abaqus.com).
33.
Craig
,
R.
, 2004,
Craig’s Soil Mechanics
,
Spon
,
London
.
34.
Phillips
,
A.
,
Brown
,
D. P.
,
Oram
,
T.
,
Howi
,
C.
, and
Usmani
,
A.
, 2005, “
The Elastic Properties of Morsellised Bone Cortico-Cancellous Bone Graft is Dependent on its Prior Loading
,”
J. Biomech.
0021-9290,
39
, pp.
1517
1526
.
35.
Ehlers
,
W.
, and
Markert
,
B.
, 2001, “
A Linear Viscoelastic Biphasic Model for Soft Tissues Based on the Theory of Porous Media
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
418
424
.
36.
Giesen
,
E.
,
Lamerigts
,
N.
,
Verdonschot
,
N.
,
Buma
,
P.
,
Schreurs
,
B.
, and
Huiskes
,
R.
, 1999, “
Mechanical Characteristics of Impacted Morsellised Bone Grafts Used in Revision of Total Hip Arthroplasty
,”
J. Bone Joint Surg. Br.
0301-620X,
81
, pp.
1052
1057
.
37.
Brodt
,
M.
,
Swan
,
C.
, and
Brown
,
T.
, 1998, “
Mechanical Behavior of Human Morselized Cancellous Bone in Triaxial Compression Testing
,”
J. Orthop. Res.
0736-0266,
16
, pp.
43
49
.
You do not currently have access to this content.