Computational modeling of the flow in cerebral aneurysms is an evolving technique that may play an important role in surgical planning. In this study, we simulated the flow in a giant basilar aneurysm before and after surgical takedown of one vertebral artery. Patient-specific geometry and flowrates obtained from magnetic resonance (MR) angiography and velocimetry were used to simulate the flow prior to and after the surgery. Numerical solutions for steady and pulsatile flows were obtained. Highly three-dimensional flows, with strong secondary flows, were computed in the aneurysm in the presurgical and postsurgical conditions. The computational results predicted that occlusion of a vertebral artery would result in a significant increase of the slow flow region formed in the bulge of the aneurysm, where increased particle residence time and velocities lower than 2.5cms were computed. The region of slow flow was found to have filled with thrombus following surgery. Predictions of numerical simulation methods are consistent with the observed outcome following surgical treatment of an aneurysm. The study demonstrates that computational models may provide hypotheses to test in future studies, and might offer guidance for the interventional treatment of cerebral aneurysms.

1.
Lawton
,
M. T.
, and
Spetzler
,
R. F.
, 1999, “
Surgical Strategies for Giant Intracranial Aneurysms
,”
Acta Neurochir. Suppl. (Wien)
0065-1419,
72
, pp.
141
156
.
2.
Hoh
,
B. L.
,
Putman
,
C. M.
,
Budzik
,
R. F.
,
Carter
,
B. S.
, and
Ogilvy
,
C. S.
, 2001, “
Combined Surgical and Endovascular Techniques of Flow Alteration to Treat Fusiform and Complex Wide-Necked Intracranial Aneurysms That are Unsuitable for Clipping or Coil Embolization
,”
J. Neurosurg.
0022-3085,
95
, pp.
24
35
.
3.
Bendok
,
B. R.
,
Hanel
,
R. A.
, and
Hopkins
,
L. N.
, 2003, “
Coil Embolization of Intracranial Aneurysms
,”
Neurosurgery
0148-396X,
52
, pp.
1125
1130
.
4.
Wardlaw
,
J. M.
, and
White
,
P. M.
, 2000, “
The Detection and Management of Unruptured Intracranial Aneurysms
,”
Brain
0006-8950,
123
, pp.
205
221
.
5.
1969, Intracranial Aneurysms and Subarachnoid Hemorrhage: A Cooperative Study,
A. L.
Sahs
,
G. E.
Perret
,
H. B.
Locksley
, and
H.
Nishioka
eds,
Lippincott
,
Philadelphia
6.
Pelz
,
D.
,
Vinuela
,
F.
,
Fox
,
A.
, and
Drake
,
C.
, 1984, “
Vertebrobasilar Occlusion Therapy of Giant Aneurysms. Significance of Angiographic Morphology of the Posterior Communicating Arteries
,”
J. Neurosurg.
0022-3085,
60
, pp.
560
565
.
7.
Jou
,
L. D.
,
Quick
,
C. M.
,
Young
,
W. L.
,
Lawton
,
M. T.
,
Higashida
,
R.
,
Martin
,
A.
, and
Saloner
,
D.
, 2003, “
Computational Approach to Quantifying Hemodynamic Forces in Giant Cerebral Aneurysms
,”
Am. J. Neuroadiol.
,
24
, pp.
1804
1810
.
8.
Taylor
,
C. A.
,
Draney
,
M. T.
,
Ku
,
J. P.
,
Parker
,
D.
,
Steele
,
B. N.
,
Wang
,
K.
, and
Zarins
,
C. K.
, 1999, “
Predictive Medicine: Computational Techniques in Therapeutic Decision-Making
,”
Comput. Aided Surg.
1092-9088,
4
, pp.
231
247
.
9.
Metcalfe
,
R. W.
, 2003, “
The Promise of Computational Fluid Dynamics as a Tool for Delineating Therapeutic Options in the Treatment of Aneurysms
,”
Am. J. Neuroadiol.
,
24
, pp.
553
554
.
10.
Steinman
,
D. A.
,
Milner
,
J. S.
,
Norley
,
C. J.
,
Lownie
,
S. P.
, and
Holdsworth
,
D. W.
, 2003, “
Image-Based Computational Simulation of Flow Dynamics in a Giant Intracranial Aneurysm
,”
Am. J. Neuroadiol.
,
24
, pp.
559
566
.
11.
Imbesi
,
S. G.
, and
Kerber
,
C. W.
, 2001, “
Analysis of Slipstream Flow in a Wide-Necked Basilar Artery Aneurysm: Evaluation of Potential Treatment Regimes
,”
Am. J. Neuroadiol.
,
22
, pp.
721
724
.
12.
Mantha
,
A.
,
Karmonik
,
C.
,
Benndorf
,
G.
,
Strother
,
C.
, and
Metcalfe
,
R.
, 2006, “
Hemodynamics in a Cerebral Artery Before and After the Formation of an Aneurysm
,”
Am. J. Neuroadiol.
,
27
, pp.
1113
1118
.
13.
Steinman
,
D. A.
, 2002, “
Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
483
497
.
14.
Hassan
,
T.
,
Ezura
,
M.
,
Timofeev
,
E. V.
,
Tominaga
,
T.
,
Saito
,
T.
,
Takahashi
,
A.
,
Takayama
,
K.
, and
Yoshimoto
,
T.
, 2004, “
Computational Simulation of Therapeutic Parent Artery Occlusion to Treat Giant Vertebrobasilar Aneurysm
,”
Am. J. Neuroadiol.
,
25
, pp.
63
68
.
15.
Jou
,
L. D.
,
Wong
,
G.
,
Disensa
,
B.
,
Lawton
,
M. T.
,
Higashida
,
R. T.
,
Young
,
W. L.
, and
Saloner
,
D.
, 2005, “
Correlation Between Lumenal Geometry Changes and Hemodynamics in Fusiform Intracranial Aneurysms
,”
Am. J. Neuroadiol.
,
26
, pp.
2357
2363
.
16.
Humphrey
,
J. D.
, and
Na
,
S.
, 2002, “
Elastodynamics and Arterial Wall Stress
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
509
523
.
17.
Gobin
,
Y. P.
,
Counord
,
J. L.
,
Flaud
,
P.
, and
Duffaux
,
J.
, 1994, “
In Vitro Study of Haemodynamics in a Giant Saccular Aneurysm Model: Influence of Flow Dynamics in the Parent Vessel and Effects of Coil Embolisation
,”
Neuroradiology
0028-3940,
36
, pp.
530
536
.
18.
Valencia
,
A. A.
,
Guzman
,
A. M.
,
Finol
,
E. A.
, and
Amon
,
C. H.
, 2006, “
Blood Flow Dynamics in Saccular Aneurysm Models of the Basilar Artery
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
516
526
.
19.
Valencia
,
A.
,
Zarate
,
A.
,
Galvez
,
M.
, and
Badilla
,
L.
, 2006, “
Non-Newtonian Blood Flow Dynamics in a Right Internal Carotid Artery With a Saccular Aneurysm
,”
Int. J. Numer. Methods Fluids
0271-2091,
50
, pp.
751
764
.
You do not currently have access to this content.