A three-dimensional nonlinear finite element model (FEM) was developed for a parametric study that examined the effect of synthetic augmentation on nonfractured vertebrae. The objective was to isolate those parameters primarily responsible for the effectiveness of the procedure; bone cement volume and bone density were expected to be highly important. Injection of bone cement was simulated in the FEM of a vertebral body that included a cellular model for the trabecular core. The addition of 10% and 20% cement by volume resulted in an increase in failure load, and the larger volume resulted in an increase in stiffness for the vertebral body. Placement of cement within the vertebral body was not as critical a parameter as cement amount. Simulated models of very poor bone quality saw the best therapeutic benefits.

1.
Powell
,
D.
, 2002, “
Osteoporosis, Learn the Basics, 1999
.” www.health.medscape.comwww.health.medscape.com
2.
Lindsay
,
R.
, 2001, “
Risk of New Vertebral Fracture in the Year Following a Fracture
,”
J. Am. Med. Assoc.
0098-7484,
285
, pp.
320
323
.
3.
Fardon
,
D.
, 2001, “
Current Topics: Vertebroplasty vs. Kyphoplasty
,”
SpineLine
,
11
, pp.
11
14
.
4.
Mathis
,
J. M.
,
Petri
,
M.
, and
Naff
,
N.
, 1998, “
Percutaneous Vertebroplasty Treatment of Steroid Induced Osteoporotic Compression Fracture
,”
Arthritis Rheum.
0004-3591,
41
, pp.
171
175
.
5.
Einhorn
,
T.
, 2000, “
Vertebroplasty, An Opportunity To Do Something Really Good for Patients
,”
Spine
0362-2436,
25
, pp.
1051
1052
.
6.
Belkoff
,
S. M.
,
Deramond
,
H.
, and
Mathis
,
J. M.
, 2000, “
Vertebroplasty: The Biomechanical Effect of Cement Volume
,”
Proceedings of the 46th Annual Meeting of the Orthopaedic Research Society
, March 12–15, Orlando, p.
786
.
7.
Lu
,
W. W.
,
Leong
,
J. C.
, and
Li
,
Y. W.
, 2000, “
Injectable Bioactive Bone Cement for Spinal Surgery: A Developmental and In Vitro Biomechanical and Morphological Study
,”
Proceedings 46th Annual Meeting of the Orthopaedic Research Society
,
Orlando, FL
, March 12–15, p.
269
.
8.
VonStechow
,
D.
,
Zurakowski
,
D.
, and
Torres
,
K.
, 2002, “
Does Vertebroplasty Alter the Mechanical Competence of Severely Osteoporotic Verebrae
,”
Proceedings 48th Annual Meeting of the Orthopaedic Research Society
, Feb. 10–13,
Dallas, TX
, p.
557
.
9.
Liebschner
,
M. A.
, 2001, “
Effects of Bone Cement Volume and Distribution on Vertebral Stiffness After Vertebroplasty
,”
Spine
0362-2436,
26
, pp.
1547
1554
.
10.
Tohmeh
,
A. G.
,
Mathis
,
J. M.
, and
Fenton
,
D. C.
, 1999, “
Biomechanical Efficacy of Unipedicular vs. Bipedicular Vertebroplasty for the Management of Osteoporotic Compression Fractures
,”
Spine
0362-2436,
24
, pp.
1772
1776
.
11.
Belkoff
,
S. M.
,
Mathis
,
J. M.
, and
Erbe
,
E. M.
, 2000, “
Biomechanical Evaluation of a New Bone Cement for Use in Vertebroplasty
,”
Spine
0362-2436,
26
, pp.
1061
1064
.
12.
Belkoff
,
S. M.
,
Mathis
,
J. M.
, and
Jasper
,
L. E.
, 2001, “
The Biomechanics of Vertebroplasty: The Effect of Cement Volume on Mechanical Behavior
,”
Spine
0362-2436,
26
, pp.
1537
1541
.
13.
Belkoff
,
S. M.
,
Mathis
,
J. M.
, and
Jasper
,
L. E.
, 2001, “
An Ex Vivo Biomechanical Evaluation of a Hydroxyapatite Cement for Use With Vertebroplasty
,”
Spine
0362-2436,
26
, pp.
1542
1546
.
14.
Sun
,
K.
, and
Liebschner
,
M. A.
, 2004, “
Biomechanics of Prophylactic Vertebral Reinforcement
,”
Spine
0362-2436,
29
, pp.
1428
1435
.
15.
Sun
,
K.
, and
Liebschner
,
M. A.
, 2004, “
Evolution of Vertebroplasty: A. Biomechanical Perspective
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
77
91
.
16.
Belkoff
,
S. M.
,
Mathis
,
J. M.
, and
Fenton
,
D. C.
, 2001, “
An Ex Vivo Biomechanical Evaluation of an Inflatable Bone Tamp Used in the Treatment of Compression Fracture
,”
Spine
0362-2436,
26
, pp.
151
156
.
17.
Garfin
,
S. R.
,
Yuan
,
H. A.
, and
Reiley
,
M. A.
, 2001, “
Kyphoplasty and Vertebroplasty for the Treatment of Painful Osteoporotic Compression Fractures
,”
Spine
0362-2436,
26
, pp.
1511
1515
.
18.
Dean
,
J. R.
,
Isan
,
K. T.
, and
Gishen
,
P.
, 2000, “
The Strengthening Effect of Percutaneous Vertebroplasty
,”
Clin. Radiol.
0009-9260,
55
, pp.
471
476
.
19.
Bostrom
,
M. P.
, and
Lane
,
J. M.
, 1997, “
Augmentation of Osteoporotic Vertebral Bodies
,”
Spine
0362-2436,
22
, pp.
38S
42S
.
20.
Schildhauer
,
T. A.
,
Bennett
,
A. P.
, and
Wright
,
T. M.
, 1999, “
Intravertebral Body Reconstruction With an Injectable In Situ-Setting Carbonated Apatite: Biomechanical Evaluation of a Minimally Invasive Technique
,”
J. Orthop. Res.
0736-0266,
17
, pp.
67
72
.
21.
Bai
,
B.
,
Jazrawi
,
L. M.
, and
Kummer
,
F. J.
, 1999, “
The Use of an Injectable, Biodegradable Calcium Phosphate Bone Substitute for the Prophylactic Augmentation of Osteoporotic Vertebrae and the Management of Vertebral Compression Fractures
,”
Spine
0362-2436,
24
, pp.
1521
1526
.
22.
Heini
,
P. F.
,
Berlemann
,
U.
,
Kaufmann
,
M.
,
Lippuner
,
K.
,
Frankhauser
,
C.
, and
VonLanduyt
,
P.
, 2001, “
Augmentation of Mechanical Properties in Osteoporotic Vertebral Bones—A Biomechanical Investigation of Vertebroplasty Efficacy With Different Bone Cements
,”
Eur. Spine J.
0940-6719,
10
, pp.
164
171
.
23.
Ikeuchi
,
M.
,
Hiroshi
,
Y.
, and
Shibata
,
T.
, 2001, “
Mechanical Augmentation of the Vertebral Body by Calcium Phosphate Cement Injection
,”
J. Orthop. Sci.
0949-2658,
6
, pp.
39
45
.
24.
Kim
,
A. K.
,
Jensen
,
M. E.
, and
Dion
,
J. E.
, 2002, “
Unilateral Transpedicular Percutaneous Vertebroplasty Initial Experience
,”
Radiology
0033-8419,
222
, pp.
737
741
.
25.
Martin
,
J. B.
,
Jean
,
B.
, and
Ruiz
,
D. S. M.
, 1999, “
Vertebroplasty: Clinical Experience and Follow-up Results
,”
Bone (N.Y.)
8756-3282,
25
, pp.
11S
15S
.
26.
Higgins
,
K. B.
,
Harten
,
R. D.
, and
Langrana
,
N. A.
, 2003, “
Biomechanical Effects of Unipedicular Vertebroplasty on Intact Vertebrae
,”
Spine
0362-2436,
28
, pp.
1540
1548
.
27.
Overaker
,
D. W.
,
Langrana
,
N. A.
, and
Cuitino
,
A. M.
, 1999, “
Finite Element Analysis of Vertebral Body Mechanics With a Nonlinear Microstructural Model for the Trabecular Core
,”
J. Biomech. Eng.
0148-0731,
121
, pp.
542
550
.
28.
Keaveney
,
T. M.
, and
Hayes
,
W. C.
, 1993, “
A 20‐Year Perspective on the Mechanical Properties of Trabecular Bone
,”
J. Biomech. Eng.
0148-0731,
115
, pp.
534
542
.
29.
Gibson
,
L. J.
, 1985, “
The Mechanical Behavior of Cancellous Bone
,”
J. Biomech.
0021-9290,
18
, pp.
317
328
.
30.
Guo
,
X.
,
McMahon
,
T.
, and
Keaveny
,
T.
, 1994, “
Finite Element Modeling of Damage Accumulation in Trabecular Bone Under Cyclic Loading
,”
J. Biomech.
0021-9290,
27
, pp.
145
155
.
31.
Jensen
,
K. S.
,
Mosekilde
,
L.
, and
Mosekilde
,
L.
, 1990, “
Model of Vertebral Trabecular Bone Architecture and its Mechanical Properties
,”
Bone
8756-3282,
11
, pp.
417
423
.
32.
Kasra
,
M.
, and
Grynpas
,
M. D.
, 1998, “
Static and Dynamic Finite Element Analyses of an Idealized Stuctural Model of Vertebral Trabecular Bone
,”
J. Biomech. Eng.
0148-0731,
120
, pp.
267
272
.
33.
Rice
,
J. C.
,
Cowin
,
S. C.
, and
Bowman
,
J. A.
, 1988, “
On the Dependence of the Elasticity and Strength of Cancellous Bone on Apparent Density
,”
J. Biomech.
0021-9290,
21
, pp.
155
168
.
34.
Mosekilde
,
L.
, 1989, “
Sex Differences in Age-Related Loss of Vertebral Trabecular Bone Mass and Structure—Biomechanical Consequences
,”
Bone (N.Y.)
8756-3282,
10
, pp.
425
432
.
35.
Atkinson
,
P. J.
, 1967, “
Variation in Trabecular Structure of Vertebrae With Age
,”
Calcif. Tissue Res.
0008-0594,
1
, pp.
24
32
.
36.
Kubik
,
T.
,
Pasowicz
,
M.
, and
Tabor
,
Z.
, 2002, “
Optimizing the Assessment of Age-Related Changes in Trabecular Bone
,”
Phys. Med. Biol.
0031-9155,
47
, pp.
1543
1553
.
37.
Genant
,
H. K.
,
Grampp
,
S.
, and
Gluer
,
C. C.
, 1994, “
Universal Standardization for Dual X-Ray Absorptiometry: Patient and Phantom Cross-Calibration Results
,”
J. Bone Miner. Res.
0884-0431,
9
, pp.
1503
1514
.
38.
Wren
,
T. A.
,
Yerby
,
A. A.
, and
Beaupre
,
G. S.
, 2000, “
Re-Interpreting Calcaneous DXA Measurements To Assess Osteopenia and Fracture Risk
,”
Proceedings 46th Annual Meeting of the Orthopaedic Research Society
, March 12–15,
Orlando, FL
, p.
757
.
39.
Linde
,
F.
, 1993, “
Elastic and Viscoelastic Properties of Trabecular Bone by a Compression Testing Approach
,”
Dan. Med. Bull.
0907-8916,
41
, pp.
119
138
.
40.
Homminga
,
J.
,
Weinans
,
H.
, and
Gowin
,
W.
, 2001, “
Osteoporosis Changes the Amount of Vertebral Trabecular Bone at Risk but Not the Vertebral Load Distribution
,”
Spine
0362-2436,
26
, pp.
1555
1561
.
41.
Ladd
,
A.
,
Kinney
,
J.
, and
Haupt
,
D.
, 1998, “
Finite-Element Modeling of Trabecular Bone: Comparison With Mechanical Testing and Determination of Tissue Modulus
,”
J. Orthop. Res.
0736-0266,
16
, pp.
622
628
.
42.
Cao
,
K.
,
Grimm
,
M.
, and
Yang
,
K.
, 2001, “
Load Sharing Within the Human Lumbar Vertebral Body Using Finite Element Method
,”
Spine
0362-2436,
26
, pp.
E253
E60
.
43.
Mizrahi
,
J.
,
Silva
,
M. J.
, and
Keaveney
,
T. M.
, 1993, “
Finite-Element Stress Analysis of the Normal and Osteoporotic Lumbar Vertebral Body
,”
Spine
0362-2436,
18
, pp.
2088
2096
.
44.
Silva
,
M. J.
,
Keaveney
,
T. M.
, and
Hayes
,
W. C.
, 1997, “
Load Sharing Between the Shell and Centrum in the Lumbar Vertebral Body
,”
Spine
0362-2436,
22
, pp.
140
150
.
45.
Sindall
,
D.
,
Langrana
,
N. A.
, and
Cuitino
,
A. M.
, 2004, “
A Parametric Study on Material Properties of Cortical Shell and Trabecular Core in an Osteoporotic Lumbar Vertebral Bone Model
,”
International Mechanical Engineering Congress and Exposition
, Nov. 14–19,
Anaheim, CA
.
46.
Berry
,
J. L.
,
Moran
,
J. M.
, and
Berg
,
W. S.
, 1987, “
A Morphometric Study of Human Lumbar Selected Thoracic Vertebrae
,”
Spine
0362-2436,
12
, pp.
362
367
.
47.
Edwards
,
W. T.
,
Zheng
,
Y.
, and
Ferrara
,
L. A.
, 2001, “
Structural Features and Thickness of the Vertebral Cortex in the Thoracolumbar Spine
,”
Spine
0362-2436,
25
, pp.
218
255
.
48.
Panjabi
,
M. M.
,
Goel
,
V.
, and
Oxland
,
T.
, 1992, “
Human Lumbar Vertebrae
,”
Spine
0362-2436,
17
, pp.
299
310
.
49.
Ritzel
,
H.
,
Amling
,
M.
, and
Posl
,
M.
, 1997, “
The Thickness of Human Vertebral Cortical Bone and its Changes in Aging and Osteoporosis: A Histomorphometric Analysis of the Complete Spinal Column From Thirty-Seven Autopsy Specimens
,”
J. Bone Miner. Res.
0884-0431,
12
, pp.
89
95
.
50.
Vesterby
,
A.
,
Mosekilde
,
L.
, and
Gunderson
,
H. J.
, 1991, “
Biologically Meaningful Determinants of the in Vitro Strength of Lumbar Vertebrae
,”
Bone (N.Y.)
8756-3282,
12
, pp.
219
224
.
51.
Lee
,
S.
,
Jun
,
B.
, and
Tack
,
G.
, 2002, “
Prediction and Assessment of Optimal Volume for PMMA Injection in Percutaneous Vertebroplasty Using Image and Biomechanical Analyses
,”
Proceedings 48th Annual Meeting of the Orthopaedic Research Society
, Feb. 10–13,
Dallas, TX
, p.
786
.
52.
Panjabi
,
M. M.
,
Koichiro
,
T.
, and
Goel
,
V.
, 1991, “
Thoracic Human Vertebrae, Quantitative Three-Dimensional Anatomy
,”
Spine
0362-2436,
16
, pp.
888
901
.
53.
Haas
,
S. S.
,
Brauer
,
G. M.
, and
Dickson
,
G. A.
, 1975, “
Characterization of Polymethylmethacrylate Bone Cement
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
57
, pp.
380
391
.
54.
Jasper
,
L. E.
,
Deramond
,
H.
, and
Mathis
,
J. M.
, 1999, “
The Effect of Monomer-to-Powder Ratio on the Material Properties of Cranioplastic
,”
Bone (N.Y.)
8756-3282,
25
, pp.
27S
29S
.
55.
White
,
A.
, and
Panjabi
,
M. M.
, 1990,
Clinical Biomechanics of the Spineed
,
J. B, Lippincott
,
Philadelphia, PA
.
56.
Yerby
,
S. A.
,
Bay
,
B. K.
, and
Toh
,
E.
, 1998, “
The Effect of Boundary Conditions on Experimentally Measured Trabecular Strain in The Thoracic Spine
,”
J. Biomech.
0021-9290,
31
, pp.
891
897
.
57.
Faulkner
,
K. G.
,
Cann
,
C. E.
, and
Hasegawa
,
B. H.
, 1991, “
Effect of Bone Distribution on Vertebral Strength: Assessment With Patient-Specific Nonlinear Finite Element Analysis
,”
Radiology
0033-8419,
179
, pp.
669
674
.
58.
Sindall
,
D.
, 2005, “
Alterations in Biomechanics of Treate, Human, Intact, Osteoporotic Spine
,”
Mechanical and Aerospace Engineering
,
Rutgers University
,
New Brunswick, NJ
, p.
108
.
You do not currently have access to this content.