The hemodynamic and the thrombogenic performance of two commercially available bileaflet mechanical heart valves (MHVs)—the ATS Open Pivot Valve (ATS) and the St. Jude Regent Valve (SJM), was compared using a state of the art computational fluid dynamics-fluid structure interaction (CFD-FSI) methodology. A transient simulation of the ATS and SJM valves was conducted in a three-dimensional model geometry of a straight conduit with sudden expansion distal the valves, including the valve housing and detailed hinge geometry. An aortic flow waveform (60 beats/min, cardiac output 4 l∕min) was applied at the inlet. The FSI formulation utilized a fully implicit coupling procedure using a separate solver for the fluid problem (FLUENT) and for the structural problem. Valve leaflet excursion and pressure differences were calculated, as well as shear stress on the leaflets and accumulated shear stress on particles released during both forward and backward flow phases through the open and closed valve, respectively. In contrast to the SJM, the ATS valve opened to less than maximal opening angle. Nevertheless, maximal and mean pressure gradients and velocity patterns through the valve orifices were comparable. Platelet stress accumulation during forward flow indicated that no platelets experienced a stress accumulation higher than 35 dyne×s/cm2, the threshold for platelet activation (Hellums criterion). However, during the regurgitation flow phase, 0.81% of the platelets in the SJM valve experienced a stress accumulation higher than 35 dyne×s/cm2, compared with 0.63% for the ATS valve. The numerical results indicate that the designs of the ATS and SJM valves, which differ mostly in their hinge mechanism, lead to different potential for platelet activation, especially during the regurgitation phase. This numerical methodology can be used to assess the effects of design parameters on the flow induced thrombogenic potential of blood recirculating devices.

1.
Bluestein
,
D.
,
Rambod
,
E.
, and
Gharib
,
M.
, 2000, “
Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves
,”
J. Biomech. Eng.
0148-0731,
122
, pp.
125
134
.
2.
Bluestein
,
D.
,
Li
,
Y. M.
, and
Krukenkamp
,
I. B.
, 2002, “
Free Emboli Formation in the Wake of Bileaflet Mechanical Heart Valves and the Effects of Implantation Techniques
,”
J. Biomech.
0021-9290,
35
, pp.
1533
1540
.
3.
Yin
,
W.
,
Yared.
,
A.
,
Jesty
,
J.
,
Affeld
,
K.
, and
Bluestein
,
D.
, 2004, “
Flow Induced Platelet Activation in Bileaflet and Monoleaflet Mechanical Heart Valves in a Left Ventricular Assist Device
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
1058
1066
.
4.
Redaelli
,
A.
,
Bothorel
,
H.
,
Votta
,
E.
,
Soncini
,
M.
,
Morbiducci
,
U.
,
Del Gaudio
,
C.
,
Balducci
,
A.
, and
Grigioni
,
M.
, 2004, “
3-D Simulation of the St. Jude Medical Bileaflet Valve Opening Process: Fluid-Structure Interaction Study and Experimental Validation
,”
J. Heart Valve Dis.
0966-8519,
13
, pp.
804
813
.
5.
Lee
,
C.
, and
Chandran
,
K.
, 1995, “
Numerical Simulation of Instantaneous Backflow Through Central Clearance of Bi-leaflet Mechanical Heart Valve at Closure: Shear Stresses and Pressure Fields
,”
Med. Biol. Eng. Comput.
0140-0118,
33
, pp.
257
263
.
6.
Cheng
,
R.
,
Lai
,
Y.
, and
Chandran
,
K.
, 2004, “
Three-dimensional Fluid-Structure Interaction Simulation of Bileaflet Mechanical Heart Valve Flow Dynamics
,”
Ann. Biomed. Eng.
0090-6964,
32
, pp.
1471
1483
.
7.
van de Vosse
,
F.
,
de Hart
,
J.
,
van Oijen
,
C.
,
Bessems
,
D.
,
Gunther
,
T.
,
Segal
,
A.
,
Wolters
,
B.
,
Stijnen
,
J.
, and
Baaijens
,
F.
, 2003, “
Finite-Element-Based Computational Methods for Cardiovascular Fluid-Structure Interaction
,”
J. Eng. Math.
0022-0833,
47
, pp.
335
368
.
8.
De Hart
,
J.
,
Peters
,
G. W. M.
,
Schreurs
,
P. J. G.
, and
Baaijens
,
F. P. T.
, 2000, “
A Two-Dimensional Fluid-Structure Interaction Model of the Aortic Valve
,”
J. Biomech.
0021-9290,
33
, pp.
1079
1088
.
9.
Dumont
,
K.
,
Stijnen
,
J.
,
Vierendeels
,
J.
,
van de Vosse
,
F.
, and
Verdonck
,
P.
, 2004, “
Validation of a Fluid-Structure Interaction Model of a Heart Valve Using the Dynamic Mesh Method in Fluent
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
7
, pp.
139
146
.
10.
Cheng
,
R.
,
Lai
,
Y.
, and
Chandran
,
K.
, 2003, “
Two-Dimensional Fluid-Structure Interaction Simulation of Bileaflet Mechanical Heart Valve Flow Dynamics
,”
J. Heart Valve Dis.
0966-8519,
12
, pp.
772
780
.
11.
Dumont
,
K.
,
Vierendeels
,
J.
,
Segers
,
P.
,
Nooten
,
G. V.
, and
Verdonck
,
P.
, 2005, “
Predicting ATS Open Pivot™ Heart Valve Performance With Computational Fluid Dynamics
,”
J. Heart Valve Dis.
0966-8519,
14
, pp.
393
399
.
12.
Feng
,
Z.
,
Umezu
,
M.
,
Fujimoto
,
T.
,
Tsukahara
,
T.
,
Nurishi
,
M.
, and
Kawaguchi
,
D.
, 2000, “
In Vitro Hydrodynamic Characteristics Among Three Bileaflet Valves in the Mitral Position
,”
Artif. Organs
0160-564X,
24
, pp.
346
354
.
13.
Ellis
,
J. T.
,
Healy
,
T. M.
,
Fontaine
,
A. A.
,
Weston
,
M. W.
,
Jarret
,
C. A.
,
Saxena
,
R.
, and
Yoganathan
,
A. P.
, 1996, “
An In Vitro Investigation of the Retrograde Flow Fields of Two Bileaflet Mechanical Heart Valves
,”
J. Heart Valve Dis.
0966-8519,
5
, pp.
572
573
.
14.
Rashtian
,
M. Y.
,
Stevenson
,
D. M.
,
Allen
,
D. T.
,
Yoganathan
,
A. P.
,
Harrison
,
E. C.
,
Edmiston
,
W. A.
,
Faughan
,
P.
, and
Rahimtoola
,
S. H.
, 1986, “
Flow Characteristics of Four Commonly Used Mechanical Heart Valves
,”
Am. J. Cardiol.
0002-9149,
58
, pp.
743
752
.
15.
Solowiejczyk
,
D. E.
,
Yamada
,
I.
,
Cape
,
E. G.
,
Manduley
,
R. A.
,
Gersony
,
W. M.
,
Jones
,
M.
, and
Valdes-Cruz
,
L. M.
, 1998, “
Simultaneous Doppler and Catheter Transvalvular Pressure Gradients Across St. Jude Bileaflet Mitral Valve Prosthesis: In Vivo Study in a Chronic Animal Model With Pediatric Valve Sizes
,”
J. Am. Soc. Echocardiogr
0894-7317,
11
, pp.
1145
1154
.
16.
Feng
,
Z.
,
Nakamura
,
T.
,
Fujimoto
,
T.
, and
Umezu
,
M.
, 2002, “
In Vitro Investigation of Opening Behavior and Hydrodynamics of Bileaflet Valves in the Mitral Position
,”
Artif. Organs
0160-564X,
26
, pp.
32
39
.
17.
Aoyagi
,
S.
,
Kawara
,
T.
,
Fukunaga
,
S.
,
Mizoguchi
,
T.
,
Nishi
,
Y.
,
Kawano
,
H.
, and
Arinaga
,
K.
, 1997, “
Cineradiographic Evaluation of ATS Open Pivot Bileaflet Valves
,”
J. Heart Valve Dis.
0966-8519,
6
, pp.
258
263
.
18.
Vierendeels
,
J.
,
Dumont
,
K.
, and
Verdonck
,
P.
, 2003, “
Stabilization of a Fluid-Structure Coupling Procedure for Rigid Body Motion
,” AIAA-2003–3720, 33rd AIAA Fluid Dynamics Conference and Exhibit, Orlando, FL June 23–26.
19.
Vierendeels
,
J.
,
Dumont
,
K.
,
Dick
,
E.
, and
Verdonck
,
P.
, 2005, “
Analysis and Stabilization of a Fluid-Structure Interaction Algorithm for the Implicit Coupling of Rigid Body Motion With a Black Box Fluid Solver
,”
AIAA J.
0001-1452, 17th AIAA CFD Conf., Toronto, Ontario, Canada, pp. 1–20.
20.
Kelly
,
S. G.
,
Verdonck
,
P. R.
,
Vierendeels
,
J. A.
,
Riemslagh
,
K.
,
Dick
,
E.
, and
Van Nooten
,
G. G.
, 1999, “
A Three-Dimensional Analysis of Flow in the Pivot Regions of an ATS Bileaflet Valve
,”
Int. J. Artif. Organs
0391-3988,
22
, pp.
754
763
.
21.
Bludszuweit
,
C.
, 1995, “
Three-Dimensional Numerical Prediction of Stress Loading of Blood Particles in a Centrifugal Pump
,”
Artif. Organs
0160-564X,
19
, pp.
590
596
.
22.
Tarnow
,
I.
,
Kristensen
,
A.
,
Olsen
,
L.
,
Falk
,
T.
,
Haubro
,
L.
,
Pedersen
,
L.
, and
Pedersen
,
H.
, 2005, “
Dogs With Heart Diseases Causing Turbulent High-Velocity Blood Flow Have Changes in Platelet Function and von Willebrand Factor Multimer Distribution
,”
J. Vet. Intern Med.
0891-6640,
19
, pp.
515
522
.
23.
Karner
,
G.
, and
Perktold
,
K.
, 1998, “
The Influence of Flow on the Concentration of Platelet Active Substances in the Vicinity of Mural Microthrombi
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
1
, pp.
285
301
.
24.
Folie
,
B. J.
, and
McIntire
,
L. V.
, 1989, “
Mathematical Analysis of Mural Thrombogenesis. Concentration Profiles of Platelet-Activating Agents and Effects of Viscous Shear Flow
,”
Biophys. J.
0006-3495,
56
, pp.
1121
1141
.
25.
Hellums
,
J.
,
Peterson
,
D.
,
Stathopoulos
,
N.
,
Moake
,
J.
, and
Giorgio
,
T.
, 1987,
Studies on the Mechanisms of Shear-Induced Platelet Activation
,
Springer-Verlag
, New York.
26.
Ellis
,
J.
,
Wick
,
T. M.
, and
Yoganathan
,
A.
, 1998, “
Prosthesis-Induced Hemolysis: Mechanisms and Quantification of Shear Stress
,”
J. Heart Valve Dis.
0966-8519,
7
, pp.
376
386
.
27.
Flachskampf
,
F. A.
,
O’Shea
,
J. P.
,
Griffin
,
B. P.
,
Guerrero
,
L.
,
Weyman
,
A. E.
, and
Thomas
,
J. D.
, 1991, “
Patterns of Normal Transvalvular Regurgitation in Mechanical Valve Prostheses
,”
J. Am. Coll. Cardiol.
0735-1097,
18
, pp.
1493
1498
.
28.
Leo
,
H. L.
,
He
,
Z.
,
Ellis
,
J. T.
, and
Yoganathan
,
A. P.
, 2002, “
Microflow Fields in the Hinge Region of the CarboMedics Bileaflet Mechanical Heart Valve Design
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
124
, pp.
561
574
.
29.
Butchart
,
E. G.
,
Ionescu
,
A.
,
Payne
,
N.
,
Giddings
,
J.
,
Grunkemeier
,
G. L.
, and
Fraser
,
A. G.
, 2003, “
A New Scoring System to Determine Thromboembolic Risk After Heart Valve Replacement
,”
Circulation
0009-7322,
108
(
1
), pp.
II68
II74
.
You do not currently have access to this content.