A precise characterization of cell elastic properties is crucial for understanding the mechanisms by which cells sense mechanical stimuli and how these factors alter cellular functions. Optical and magnetic tweezers are micromanipulation techniques which are widely used for quantifying the stiffness of adherent cells from their response to an external force applied on a bead partially embedded within the cell cortex. However, the relationships between imposed external force and resulting bead translation or rotation obtained from these experimental techniques only characterize the apparent cell stiffness. Indeed, the value of the estimated apparent cell stiffness integrates the effect of different geometrical parameters, the most important being the bead embedding angle 2γ, bead radius R, and cell height h. In this paper, a three-dimensional finite element analysis was used to compute the cell mechanical response to applied force in tweezer experiments and to explicit the correcting functions which have to be used in order to infer the intrinsic cell Young’s modulus from the apparent elasticity modulus. Our analysis, performed for an extensive set of values of γ, h, and R, shows that the most relevant parameters for computing the correcting functions are the embedding half angle γ and the ratio hu2R, where hu is the under bead cell thickness. This paper provides original analytical expressions of these correcting functions as well as the critical values of the cell thickness below which corrections of the apparent modulus are necessary to get an accurate value of cell Young’s modulus. Moreover, considering these results and taking benefit of previous results obtained on the estimation of cell Young’s modulus of adherent cells probed by magnetic twisting cytometry (MTC) (Ohayon, J., and Tracqui, P., 2005, Ann. Biomed. Eng., 33, pp. 131–141), we were able to clarify and to solve the still unexplained discrepancies reported between estimations of elasticity modulus performed on the same cell type and probed with MTC and optical tweezers (OT). More generally, this study may strengthen the applicability of optical and magnetic tweezers techniques by insuring a more precise estimation of the intrinsic cell Young’s modulus (CYM).

1.
Ingber
,
D. E.
, 2006, “
Cellular Mechanotransduction: Putting All the Pieces Together Again
,”
FASEB J.
0892-6638,
20
(
7
), pp.
811
827
.
2.
Fabry
,
B.
,
Maksym
,
G. N.
,
Shore
,
S. A.
,
Moore
,
P. E.
,
Panettieri
,
R. A.
Jr.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
, 2001, “
Selected Contribution: Time Course and Heterogeneity of Contractile Responses in Cultured Human Airway Smooth Muscle Cells
,”
J. Appl. Physiol.
8750-7587,
91
(
2
), pp.
986
994
.
3.
Matthews
,
B. D.
,
Overby
,
D. R.
,
Mannix
,
R.
, and
Ingber
,
D. E.
, 2006, “
Cellular Adaptation to Mechanical Stress: Role of Integrins, Rho, Cytoskeletal Tension and Mechanosensitive Ion Channels
,”
J. Cell. Sci.
0021-9533,
119
(
Pt 3
), pp.
508
518
.
4.
Wang
,
N.
, and
Ingber
,
D. E.
, 1995, “
Probing Transmembrane Mechanical Coupling and Cytomechanics Using Magnetic Twisting Cytometry
,”
Biochem. Cell Biol.
0829-8211,
73
(
7-8
), pp.
327
335
.
5.
Wang
,
N.
,
Naruse
,
K.
,
Stamenovic
,
D.
,
Fredberg
,
J. J.
,
Mijailovich
,
S. M.
,
Tolic-Norrelykke
,
I. M.
,
Polte
,
T.
,
Mannix
,
R.
, and
Ingber
,
D. E.
, 2001, “
Mechanical Behavior in Living Cells Consistent With the Tensegrity Model
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
98
(
14
), pp.
7765
7770
.
6.
Boudou
,
T.
,
Ohayon
,
J.
,
Arntz
,
Y.
,
Finet
,
G.
,
Picart
,
C.
, and
Tracqui
,
P.
, 2006, “
An Extended Modeling of the Micropipette Aspiration Experiment for the Characterization of the Young’s Modulus and Poisson’s Ratio of Adherent Thin Biological Samples: Numerical and Experimental Studies
,”
J. Biomech.
0021-9290,
39
(
9
), pp.
1677
1685
.
7.
Guilak
,
F.
,
Alexopoulos
,
L. G.
,
Upton
,
M. L.
,
Youn
,
I.
,
Choi
,
J. B.
,
Cao
,
L.
,
Setton
,
L. A.
, and
Haider
,
M. A.
, 2006, “
The Pericellular Matrix as a Transducer of Biomechanical and Biochemical Signals in Articular Cartilage
,”
Ann. N.Y. Acad. Sci.
0077-8923,
1068
, pp.
498
512
.
8.
Liao
,
D.
,
Sevcencu
,
C.
,
Yoshida
,
K.
, and
Gregersen
,
H.
, 2006, “
Viscoelastic Properties of Isolated Rat Colon Smooth Muscle Cells
,”
Cell Biol. Int.
1065-6995,
30
(
10
), pp.
854
858
.
9.
Sato
,
M.
,
Theret
,
D. P.
,
Wheeler
,
L. T.
,
Ohshima
,
N.
, and
Nerem
,
R. M.
, 1990, “
Application of the Micropipette Technique to the Measurement of Cultured Porcine Aortic Endothelial Cell Viscoelastic Properties
,”
ASME J. Biomech. Eng.
0148-0731,
112
(
3
), pp.
263
268
.
10.
Coughlin
,
M. F.
, and
Stamenovic
,
D.
, 2003, “
A Prestressed Cable Network Model of the Adherent Cell Cytoskeleton
,”
Biophys. J.
0006-3495,
84
(
2 Pt 1
), pp.
1328
1336
.
11.
Duszyk
,
M.
,
Schwab
,
B.
3rd
,
Zahalak
,
G. I.
,
Qian
,
H.
, and
Elson
,
E. L.
, 1989, “
Cell Poking: Quantitative Analysis of Indentation of Thick Viscoelastic Layers
,”
Biophys. J.
0006-3495,
55
(
4
), pp.
683
690
.
12.
Goldmann
,
W. H.
,
Galneder
,
R.
,
Ludwig
,
M.
,
Kromm
,
A.
, and
Ezzell
,
R. M.
, 1998, “
Differences in F9 and 5.51 Cell Elasticity Determined by Cell Poking and Atomic Force Microscopy
,”
FEBS Lett.
0014-5793,
424
(
3
), pp.
139
142
.
13.
Alcaraz
,
J.
,
Buscemi
,
L.
,
Grabulosa
,
M.
,
Trepat
,
X.
,
Fabry
,
B.
,
Farre
,
R.
, and
Navajas
,
D.
, 2003, “
Microrheology of Human Lung Epithelial Cells Measured by Atomic Force Microscopy
,”
Biophys. J.
0006-3495,
84
(
3
), pp.
2071
2079
.
14.
Dimitriadis
,
E. K.
,
Horkay
,
F.
,
Maresca
,
J.
,
Kachar
,
B.
, and
Chadwick
,
R. S.
, 2002, “
Determination of Elastic Moduli of Thin Layers of Soft Material Using the Atomic Force Microscope
,”
Biophys. J.
0006-3495,
82
(
5
), pp.
2798
2810
.
15.
Dulinska
,
I.
,
Targosz
,
M.
,
Strojny
,
W.
,
Lekka
,
M.
,
Czuba
,
P.
,
Balwierz
,
W.
, and
Szymonski
,
M.
, 2006, “
Stiffness of Normal and Pathological Erythrocytes Studied by Means of Atomic Force Microscopy
,”
J. Biochem. Biophys. Methods
0165-022X,
66
(
1-3
), pp.
1
11
.
16.
Shroff
,
S. G.
,
Saner
,
D. R.
, and
Lal
,
R.
, 1995, “
Dynamic Micromechanical Properties of Cultured Rat Atrial Myocytes Measured by Atomic Force Microscopy
,”
Am. J. Physiol.
0002-9513,
269
(
1 Pt 1
), pp.
C286
-
C292
.
17.
Caille
,
N.
,
Thoumine
,
O.
,
Tardy
,
Y.
, and
Meister
,
J. J.
, 2002, “
Contribution of the Nucleus to the Mechanical Properties of Endothelial Cells
,”
J. Biomech.
0021-9290,
35
(
2
), pp.
177
187
.
18.
Desprat
,
N.
,
Richert
,
A.
,
Simeon
,
J.
, and
Asnacios
,
A.
, 2005, “
Creep Function of a Single Living Cell
,”
Biophys. J.
0006-3495,
88
(
3
), pp.
2224
2233
.
19.
Thoumine
,
O.
,
Ott
,
A.
,
Cardoso
,
A.
, and
Meister
,
J. J.
, 1999, “
Microplates: A New Tool for Manipulation and Mechanical Perturbation of Individual Cells
,”
J. Biochem. Biophys. Methods
0165-022X,
39
(
1-2
), pp.
47
62
.
20.
Balland
,
M.
,
Richert
,
A.
, and
Gallet
,
F.
, 2005, “
The Dissipative Contribution of Myosin II in the Cytoskeleton Dynamics of Myoblasts
,”
Eur. Biophys. J.
0175-7571,
34
(
3
), pp.
255
261
.
21.
Henon
,
S.
,
Lenormand
,
G.
,
Richert
,
A.
, and
Gallet
,
F.
, 1999, “
A New Determination of the Shear Modulus of the Human Erythrocyte Membrane Using Optical Tweezers
,”
Biophys. J.
0006-3495,
76
(
2
), pp.
1145
1151
.
22.
Laurent
,
V. M.
,
Henon
,
S.
,
Planus
,
E.
,
Fodil
,
R.
,
Balland
,
M.
,
Isabey
,
D.
, and
Gallet
,
F.
, 2002, “
Assessment of Mechanical Properties of Adherent Living Cells by Bead Micromanipulation: Comparison of Magnetic Twisting Cytometry vs Optical Tweezers
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
4
), pp.
408
421
.
23.
Lenormand
,
G.
,
Henon
,
S.
,
Richert
,
A.
,
Simeon
,
J.
, and
Gallet
,
F.
, 2001, “
Direct Measurement of the Area Expansion and Shear Moduli of the Human Red Blood Cell Membrane Skeleton
,”
Biophys. J.
0006-3495,
81
(
1
), pp.
43
56
.
24.
Lenormand
,
G.
,
Henon
,
S.
,
Richert
,
A.
,
Simeon
,
J.
, and
Gallet
,
F.
, 2003, “
Elasticity of the Human Red Blood Cell Skeleton
,”
Biorheology
0006-355X,
40
(
1-3
), pp.
247
251
.
25.
Mills
,
J. P.
,
Qie
,
L.
,
Dao
,
M.
,
Lim
,
C. T.
, and
Suresh
,
S.
, 2004, “
Nonlinear Elastic and Viscoelastic Deformation of the Human Red Blood Cell With Optical Tweezers
,”
Mech. Chem. Biosyst.
1546-2048,
1
(
3
), pp.
169
180
.
26.
Sheetz
,
M. P.
, 1998, “
Laser Tweezers in Cell Biology. Introduction
,”
Methods Cell Biol.
0091-679X,
55
, pp.
11
12
.
27.
Svoboda
,
K.
, and
Block
,
S. M.
, 1994, “
Biological Applications of Optical Forces
,”
Annu. Rev. Biophys. Biomol. Struct.
1056-8700,
23
, pp.
247
285
.
28.
Ananthakrishnan
,
R.
,
Guck
,
J.
,
Wottawah
,
F.
,
Schinkinger
,
S.
,
Lincoln
,
B.
,
Romeyke
,
M.
,
Moon
,
T.
, and
Kas
,
J.
, 2006, “
Quantifying the Contribution of Actin Networks to the Elastic Strength of Fibroblasts
,”
J. Theor. Biol.
0022-5193,
242
(
2
), pp.
502
516
.
29.
Guck
,
J.
,
Ananthakrishnan
,
R.
,
Mahmood
,
H.
,
Moon
,
T. J.
,
Cunningham
,
C. C.
, and
Kas
,
J.
, 2001, “
The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells
,”
Biophys. J.
0006-3495,
81
(
2
), pp.
767
784
.
30.
Wottawah
,
F.
,
Schinkinger
,
S.
,
Lincoln
,
B.
,
Ananthakrishnan
,
R.
,
Romeyke
,
M.
,
Guck
,
J.
, and
Kas
,
J.
, 2005, “
Optical Rheology of Biological Cells
,”
Phys. Rev. Lett.
0031-9007,
94
(
9
), pp.
098103
.
31.
Bausch
,
A. R.
,
Moller
,
W.
, and
Sackmann
,
E.
, 1999, “
Measurement of Local Viscoelasticity and Forces in Living Cells by Magnetic Tweezers
,”
Biophys. J.
0006-3495,
76
(
1 Pt 1
), pp.
573
579
.
32.
de Vries
,
A. H.
,
Krenn
,
B. E.
,
van Driel
,
R.
, and
Kanger
,
J. S.
, 2005, “
Micro Magnetic Tweezers for Nanomanipulation Inside Live Cells
,”
Biophys. J.
0006-3495,
88
(
3
), pp.
2137
2144
.
33.
Ter-Oganessian
,
N.
,
Pink
,
D. A.
, and
Boulbitch
,
A.
, 2005, “
Active Microrheology of Networks Composed of Semiflexible Polymers: Theory and Comparison With Simulations
,”
Phys. Rev. E
1063-651X,
72
(
4 Pt 1
), pp.
041511
.
34.
Walter
,
N.
,
Selhuber
,
C.
,
Kessler
,
H.
, and
Spatz
,
J. P.
, 2006, “
Cellular Unbinding Forces of Initial Adhesion Processes on Nanopatterned Surfaces Probed With Magnetic Tweezers
,”
Nano Lett.
1530-6984,
6
(
3
), pp.
398
402
.
35.
Fabry
,
B.
,
Maksym
,
G. N.
,
Hubmayr
,
R. D.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
, 1999, “
Impplications of Heterogeneous Bead Behavior on Cell Mechanical Properties Measured With Magnetic Twisting Cytometry
,”
J. Magn. Magn. Mater.
0304-8853,
194
, pp.
120
125
.
36.
Fabry
,
B.
,
Maksym
,
G. N.
,
Butler
,
J. P.
,
Glogauer
,
M.
,
Navajas
,
D.
, and
Fredberg
,
J. J.
, 2001, “
Scaling the Microrheology of Living Cells
,”
Phys. Rev. Lett.
0031-9007,
87
(
14
), pp.
148102
.
37.
Fereol
,
S.
,
Fodil
,
R.
,
Labat
,
B.
,
Galiacy
,
S.
,
Laurent
,
V. M.
,
Louis
,
B.
,
Isabey
,
D.
, and
Planus
,
E.
, 2006, “
Sensitivity of Alveolar Macrophages to Substrate Mechanical and Adhesive Properties
,”
Cell Motil. Cytoskeleton
0886-1544,
63
(
6
), pp.
321
340
.
38.
Hubmayr
,
R. D.
,
Shore
,
S. A.
,
Fredberg
,
J. J.
,
Planus
,
E.
,
Panettieri
,
R. A.
, Jr.
,
Moller
,
W.
,
Heyder
,
J.
, and
Wang
,
N.
, 1996, “
Pharmacological Activation Changes Stiffness of Cultured Human Airway Smooth Muscle Cells
,”
Am. J. Physiol.
0002-9513,
271
(
5 Pt 1
), pp.
C1660
C1668
.
39.
Lenormand
,
G.
,
Millet
,
E.
,
Fabry
,
B.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
, 2004, “
Linearity and Time-Scale Invariance of the Creep Function in Living Cells
,”
J. R. Soc., Interface
1742-5689,
1
(
1
), pp.
91
97
.
40.
Ohayon
,
J.
,
Tracqui
,
P.
,
Fodil
,
R.
,
Fereol
,
S.
,
Laurent
,
V. M.
,
Planus
,
E.
, and
Isabey
,
D.
, 2004, “
Analysis of Nonlinear Responses of Adherent Epithelial Cells Probed by Magnetic Bead Twisting: A Finite Element Model Based on a Homogenization Approach
,”
ASME J. Biomech. Eng.
0148-0731,
126
(
6
), pp.
685
698
.
41.
Ohayon
,
J.
, and
Tracqui
,
P.
, 2005, “
Computation of Adherent Cell Elasticity for Critical Cell-Bead Geometry in Magnetic Twisting Experiments
,”
Ann. Biomed. Eng.
0090-6964,
33
(
2
), pp.
131
141
.
42.
Potard
,
U. S.
,
Butler
,
J. P.
, and
Wang
,
N.
, 1997, “
Cytoskeletal Mechanics in Confluent Epithelial Cells Probed Through Integrins and E-cadherins
,”
Am. J. Physiol.
0002-9513,
272
(
5 Pt 1
), pp.
C1654
C1663
.
43.
Puig-de-Morales
,
M.
,
Millet
,
E.
,
Fabry
,
B.
,
Navajas
,
D.
,
Wang
,
N.
,
Butler
,
J. P.
, and
Fredberg
,
J. J.
, 2004, “
Cytoskeletal Mechanics in Adherent Human Airway Smooth Muscle Cells: Probe Specificity and Scaling of Protein-Protein Dynamics
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
287
(
3
), pp.
C643
C654
.
44.
Wang
,
N.
,
Butler
,
J. P.
, and
Ingber
,
D. E.
, 1993, “
Mechanotransduction Across the Cell Surface and Through the Cytoskeleton
,”
Science
0036-8075,
260
(
5111
), pp.
1124
1127
.
45.
Wang
,
N.
, and
Ingber
,
D. E.
, 1994, “
Control of Cytoskeletal Mechanics by Extracellular Matrix, Cell Shape, and Mechanical Tension
,”
Biophys. J.
0006-3495,
66
(
6
), pp.
2181
2189
.
46.
Lau
,
A. W.
,
Hoffman
,
B. D.
,
Davies
,
A.
,
Crocker
,
J. C.
, and
Lubensky
,
T. C.
, 2003, “
Microrheology, Stress Fluctuations, and Active Behavior of Living Cells
,”
Phys. Rev. Lett.
0031-9007,
91
(
19
), pp.
198101
.
47.
Salamon
,
P.
,
Fernandez-Garcia
,
D.
, and
Gomez-Hernandez
,
J. J.
, 2006, “
A Review and Numerical Assessment of the Random Walk Particle Tracking Method
,”
J. Contam. Hydrol.
0169-7722,
87
, pp.
277
305
.
48.
Tseng
,
Y.
,
Kole
,
T. P.
, and
Wirtz
,
D.
, 2002, “
Micromechanical Mapping of Live Cells by Multiple-Particle-Tracking Microrheology
,”
Biophys. J.
0006-3495,
83
(
6
), pp.
3162
3176
.
49.
Mijailovich
,
S. M.
,
Kojic
,
M.
,
Zivkovic
,
M.
,
Fabry
,
B.
, and
Fredberg
,
J. J.
, 2002, “
A Finite Element Model of Cell Deformation During Magnetic Bead Twisting
,”
J. Appl. Physiol.
8750-7587,
93
(
4
), pp.
1429
1436
.
50.
Feneberg
,
W.
,
Aepfelbacher
,
M.
, and
Sackmann
,
E.
, 2004, “
Microviscoelasticity of the Apical Cell Surface of Human Umbilical Vein Endothelial Cells (HUVEC) Within Confluent Monolayers
,”
Biophys. J.
0006-3495,
87
(
2
), pp.
1338
1350
.
51.
Fodil
,
R.
,
Laurent
,
V.
,
Planus
,
E.
, and
Isabey
,
D.
, 2003, “
Characterization of Cytoskeleton Mechanical Properties and 3D-Actin Structure in Twisted Adherent Epithelial Cells
,”
Biorheology
0006-355X,
40
(
1-3
), pp.
241
245
.
52.
Holzapfel
,
G.
, 2001,
Nonlinear Solid Mechanics
,
Wiley
, NY.
53.
Phan-Thien
,
N.
, 1993, “
Rigid Spherical Inclusion: The Multipole Expansion
,”
J. Elast.
0374-3535,
32
, pp.
243
252
.
54.
Maksym
,
G. N.
,
Fabry
,
B.
,
Butler
,
J. P.
,
Navajas
,
D.
,
Tschumperlin
,
D. J.
,
Laporte
,
J. D.
, and
Fredberg
,
J. J.
, 2000, “
Mechanical Properties of Cultured Human Airway Smooth Muscle Cells From 0.05 to 0.4Hz
,”
J. Appl. Physiol.
8750-7587,
89
(
4
), pp.
1619
1632
.
55.
Karcher
,
H.
,
Lammerding
,
J.
,
Huang
,
H.
,
Lee
,
R. T.
,
Kamm
,
R. D.
, and
Kaazempur-Mofrad
,
M. R.
, 2003, “
A Three-Dimensional Viscoelastic Model for Cell Deformation With Experimental Verification
,”
Biophys. J.
0006-3495,
85
(
5
), pp.
3336
3349
.
56.
Rotsch
,
C.
,
Jacobson
,
K.
, and
Radmacher
,
M.
, 1999, “
Dimensional and Mechanical Dynamics of Active and Stable Edges in Motile Fibroblasts Investigated by Using Atomic Force Microscopy
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
96
(
3
), pp.
921
926
.
57.
Tracqui
,
P.
, and
Ohayon
,
J.
, 2004, “
Influence of the Cellular Nucleus on the Cell Mechanical Response During Magnetic Bead Twisting
,”
Acta Biotheor.
0001-5342,
52
(
4
), pp.
323
341
.
58.
Hu
,
S.
,
Eberhard
,
L.
,
Chen
,
J.
,
Love
,
J. C.
,
Butler
,
J. B.
,
Fredberg
,
J. J.
,
Whitesides
,
G. M.
, and
Wang
,
N.
, 2004, “
Mechanical Anisotropy of Adherent Cells Probed by a Three-Dimensional Magnetic Twisting Device
,”
Am. J. Physiol.: Cell Physiol.
0363-6143,
287
, pp.
1184
1191
.
59.
Djordjevic
,
V. D.
,
Jaric
,
J.
,
Fabry
,
B.
,
Fredberg
,
J. J.
, and
Stamenovic
,
D.
, 2003, “
Fractional Derivatives Embody Essential Features of Cell Rheological Behavior
,”
Ann. Biomed. Eng.
0090-6964,
31
(
6
), pp.
692
699
.
60.
Fabry
,
B.
,
Maksym
,
G. N.
,
Butler
,
J. P.
,
Glogauer
,
M.
,
Navajas
,
D.
,
Taback
,
N. A.
,
Millet
,
E. J.
, and
Fredberg
,
J. J.
, 2003, “
Time Scale and Other Invariants of Integrative Mechanical Behavior in Living Cells
,”
Phys. Rev. E
1063-651X,
68
(
4 Pt 1
), pp.
041914
.
61.
Trickey
,
W. R.
,
Vail
,
T. P.
, and
Guilak
,
F.
, 2004, “
The Role of the Cytoskeleton in the Viscoelastic Properties of Human Articular Chondrocytes
,”
J. Orthop. Res.
0736-0266,
22
(
1
), pp.
131
139
.
You do not currently have access to this content.