Osmotic loading of cells has been used to investigate their physicochemical properties as well as their biosynthetic activities. The classical Kedem–Katchalsky framework for analyzing cell response to osmotic loading, which models the cell as a fluid-filled membrane, does not generally account for the possibility of partial volume recovery in response to loading with a permeating osmolyte, as observed in some experiments. The cell may be more accurately represented as a hydrated gel surrounded by a semi-permeable membrane, with the gel and membrane potentially exhibiting different properties. To help assess whether this more elaborate model of the cell is justified, this study investigates the response of spherical gels to osmotic loading, both from experiments and theory. The spherical gel is described using the framework of mixture theory. In the experimental component of the study alginate is used as the model gel, and is osmotically loaded with dextran solutions of various concentrations and molecular weight, to verify the predictions from the theoretical analysis. Results show that the mixture framework can accurately predict the transient and equilibrium response of alginate gels to osmotic loading with dextran solutions. It is found that the partition coefficient of dextran in alginate regulates the equilibrium volume response and can explain partial volume recovery based on passive transport mechanisms. The validation of this theoretical framework facilitates future investigations of the role of the protoplasm in the response of cells to osmotic loading.

1.
Onsager
,
L.
, 1931, “
Reciprocal Relations in Irreversible Processes. I.
,”
Phys. Rev.
0031-899X,
37
, pp.
405
426
.
2.
Onsager
,
L.
, 1931, “
Reciprocal Relations in Irreversible Processes. Ii.
,”
Phys. Rev.
0031-899X,
38
, pp.
2265
2279
.
3.
Staverman
,
A. J.
, 1952, “
Non-Equilibrium Thermodynamics of Membrane Processes
,”
Trans. Faraday Soc.
0014-7672,
48
, pp.
176
185
.
4.
Kedem
,
O.
, and
Katchalsky
,
A.
, 1958, “
Thermodynamic Analysis of the Permeability of Biological Membranes to Non-Electrolytes
,”
Biochim. Biophys. Acta
0006-3002,
27
, pp.
229
246
.
5.
Kedem
,
O.
, and
Katchalsky
,
A.
, 1961, “
A Physical Interpretation of the Phenomenological Coefficients of Membrane Permeability
,”
J. Gen. Physiol.
0022-1295,
45
, pp.
143
179
.
6.
Kleinhans
,
F. W.
, 1998, “
Membrane Permeability Modeling: Kedem-Katchalsky Vs a Two-Parameter Formalism
,”
Cryobiology
0011-2240,
37
, pp.
271
289
.
7.
Jacobs
,
M. H.
, and
Stewart
,
D. R.
, 1932, “
A Simple Method for the Quantitative Measurement of Cell Permeability
,”
J. Cell. Comp. Physiol.
0095-9898,
1
, pp.
71
82
.
8.
Mazur
,
P.
,
Leibo
,
S. P.
, and
Miller
,
R. H.
, 1974, “
Permeability of the Bovine Red Cell to Glycerol in Hyperosmotic Solutions at Various Temperatures
,”
J. Membr. Biol.
0022-2631,
15
, pp.
107
136
.
9.
Lucio
,
A. D.
,
Santos
,
R. A.
, and
Mesquita
,
O. N.
, 2003, “
Measurements and Modeling of Water Transport and Osmoregulation in a Single Kidney Cell Using Optical Tweezers and Videomicroscopy
,”
Phys. Rev. E
1063-651X,
68
,
041906
.
10.
Ateshian
,
G. A.
,
Likhitpanichkul
,
M.
, and
Hung
,
C. T.
, 2006, “
A Mixture Theory Analysis for Passive Transport in Osmotic Loading of Cells
,”
J. Biomech.
0021-9290,
39
, pp.
464
475
.
11.
Mills
,
N.
, 1966, “
Incompressible Mixture of Newtonian Fluids
,”
Int. J. Eng. Sci.
0020-7225,
4
, pp.
97
112
.
12.
Bowen
,
R. M.
, 1980, “
Incompressible Porous Media Models by Use of the Theory of Mixtures
,”
Int. J. Eng. Sci.
0020-7225,
18
, pp.
1129
1148
.
13.
Atkin
,
R. J.
, and
Craine
,
R. E.
, 1976, “
Continuum Theories of Mixtures: Basic Theory and Historical Development
,”
Q. J. Mech. Appl. Math.
0033-5614,
29
, pp.
209
244
.
14.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
, 1980, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
J. Biomech. Eng.
0148-0731,
102
, pp.
73
84
.
15.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
, 1987, “
Cartilage Electromechanics–Ii. A Continuum Model of Cartilage Electrokinetics and Correlation With Experiments
,”
J. Biomech.
0021-9290,
20
, pp.
629
639
.
16.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
, 1991, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
J. Biomech. Eng.
0148-0731,
113
, pp.
245
258
.
17.
Huyghe
,
J. M.
, and
Janssen
,
J. D.
, 1997, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
0020-7225,
35
, pp.
793
802
.
18.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
, 1998, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-Electrolytes: Passive Transport and Swelling Behaviors
,”
J. Biomech. Eng.
0148-0731,
120
, pp.
169
180
.
19.
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2003, “
Modeling of Neutral Solute Transport in a Dynamically Loaded Porous Permeable Gel: Implications for Articular Cartilage Biosynthesis and Tissue Engineering
,”
J. Biomech. Eng.
0148-0731,
125
, pp.
602
614
.
20.
Maroudas
,
A.
, 1968, “
Physicochemical Properties of Cartilage in the Light of Ion Exchange Theory
,”
Biophys. J.
0006-3495,
8
, pp.
575
595
.
21.
Van Holde
,
K. E.
,
Johnson
,
W. C.
, and
Ho
,
P. S.
, 1998, “
Thermodynamics of Transport Processes
,”
Principles of Physical Biochemistry
,
Prentice-Hall
, Upper Saddle River, NJ, p.
574
.
22.
Mauck
,
R. L.
,
Soltz
,
M. A.
,
Wang
,
C. C.
,
Wong
,
D. D.
,
Chao
,
P. H.
,
Valhmu
,
W. B.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2000, “
Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels
,”
J. Biomech. Eng.
0148-0731,
122
, pp.
252
260
.
23.
LeRoux
,
M. A.
,
Guilak
,
F.
, and
Setton
,
L. A.
, 1999, “
Compressive and Shear Properties of Alginate Gel: Effects of Sodium Ions and Alginate Concentration
,”
J. Biomed. Mater. Res.
0021-9304,
47
, pp.
46
53
.
24.
Weiss
,
J. A.
, and
Maakestad
,
B. J.
, 2006, “
Permeability of Human Medial Collateral Ligament in Compression Transverse to the Collagen Fiber Direction
,”
J. Biomech.
0021-9290,
39
, pp.
276
283
.
25.
Leddy
,
H. A.
,
Awad
,
H. A.
, and
Guilak
,
F.
, 2004, “
Molecular Diffusion in Tissue-Engineered Cartilage Constructs: Effects of Scaffold Material, Time, and Culture Conditions
,”
J. Biomed. Mater. Res.
0021-9304,
70B
, pp.
397
406
.
26.
Xu
,
X.
,
Cui
,
Z.
, and
Urban
,
J. P.
, 2003, “
Measurement of the Chondrocyte Membrane Permeability to Me2so, Glycerol and 1,2-Propanediol
,”
Med. Eng. Phys.
1350-4533,
25
, pp.
573
579
.
27.
Jones
,
W. R.
,
Ting-Beall
,
H. P.
,
Lee
,
G. M.
,
Kelley
,
S. S.
,
Hochmuth
,
R. M.
, and
Guilak
,
F.
, 1999, “
Alterations in the Young’s Modulus and Volumetric Properties of Chondrocytes Isolated From Normal and Osteoarthritic Human Cartilage
,”
J. Biomech.
0021-9290,
32
, pp.
119
127
.
You do not currently have access to this content.