In the preparation of bioengineered reparative strategies for damaged or diseased tissues, the processes of biomaterial degradation and neotissue synthesis combine to affect the developing mechanical state of multiphase, composite engineered tissues. Here, cell-polymer constructs for engineered cartilage have been fabricated by seeding chondrocytes within three-dimensional scaffolds of biodegradable polymers. During culture, synthetic scaffolds degraded passively as the cells assembled an extracellular matrix (ECM) composed primarily of glycosaminoglycan and collagen. Biochemical and biomechanical assessment of the composite (cells, ECM, and polymer scaffold) were modeled at a unit-cell level to mathematically solve stress-strain relationships and thus construct elastic properties (n=4 samples per seven time points). This approach employed a composite spheres, micromechanical analysis to determine bulk moduli of: (1) the cellular-ECM inclusion within the supporting scaffold structure; and (2) the cellular inclusion within its ECM. Results indicate a dependence of constituent volume fractions with culture time (p<0.05). Overall mean bulk moduli were variably influenced by culture, as noted for the cell-ECM inclusion (Kcm=29.7kPa, p=0.1439), the cellular inclusion (Kc=5.5kPa, p=0.0067), and its surrounding ECM (Km=373.9kPa, p=0.0748), as well as the overall engineered construct (K=165.0kPa, p=0.6899). This analytical technique provides a framework to describe the time-dependent contribution of cells, accumulating ECM, and a degrading scaffold affecting bioengineered construct mechanical properties.

1.
Praemer
,
A.
,
Furner
,
D.
, and
Rice
,
D. P.
, 1999,
Musculoskeletal Conditions in the United States
,
American Academy of Orthopaedic Surgeons
, Rosemont, IL.
2.
Masuda
,
K.
,
Sah
,
R. L.
,
Hejna
,
M. J.
, and
Thonar
,
E. J.
, 2003, “
A Novel Two-Step Method for the Formation of Tissue-Engineered Cartilage by Mature Bovine Chondrocytes: The Alginate-Recovered-Chondrocyte (Arc) Method
,”
J. Orthop. Res.
0736-0266,
21
(
1
), pp.
139
148
.
3.
Wilson
,
C. G.
,
Bonassar
,
L. J.
, and
Kohles
,
S. S.
, 2002, “
Modeling the Dynamic Composition of Engineered Cartilage
,”
Arch. Biochem. Biophys.
0003-9861,
408
(
2
), pp.
246
254
.
4.
Schaefer
,
D.
,
Martin
,
I.
,
Jundt
,
G.
,
Seidel
,
J.
,
Heberer
,
M.
,
Grodzinsky
,
A.
,
Bergin
,
I.
,
Vunjak-Novakovic
,
G.
, and
Freed
,
L. E.
, 2002, “
Tissue-Engineered Composites for the Repair of Large Osteochondral Defects
,”
Arthritis Rheum.
0004-3591,
46
(
9
), pp.
2524
2534
.
5.
Hung
,
C. T.
,
Lima
,
E. G.
,
Mauck
,
R. L.
,
Taki
,
E.
,
LeRoux
,
M. A.
,
Lu
,
H. H.
,
Stark
,
R. G.
,
Guo
,
X. E.
, and
Ateshian
,
G. A.
, 2003, “
Anatomically Shaped Osteochondral Constructs for Articular Cartilage Repair
,”
J. Biomech.
0021-9290,
36
(
12
), pp.
1853
1864
.
6.
Klein
,
T. J.
,
Schumacher
,
B. L.
,
Schmidt
,
T. A.
,
Li
,
K. W.
,
Voegtline
,
M. S.
,
Masuda
,
K.
,
Thonar
,
E. J.
, and
Sah
,
R. L.
, 2003, “
Tissue Engineering of Stratified Articular Cartilage From Chondrocyte Subpopulations
,”
Osteoarthritis Cartilage
1063-4584,
11
(
8
), pp.
595
602
.
7.
Waldman
,
S. D.
,
Grynpas
,
M. D.
,
Pilliar
,
R. M.
, and
Kandel
,
R. A.
, 2003, “
The Use of Specific Chondrocyte Populations to Modulate the Properties of Tissue-Engineered Cartilage
,”
J. Orthop. Res.
0736-0266,
21
(
1
), pp.
132
138
.
8.
Davisson
,
T.
,
Sah
,
R. L.
, and
Ratcliffe
,
A.
, 2002, “
Perfusion Increases Cell Content and Matrix Synthesis in Chondrocyte Three-Dimensional Cultures
,”
Tissue Eng.
1076-3279,
8
(
5
), pp.
807
816
.
9.
Saha
,
A. K.
,
Mazumdar
,
J.
, and
Kohles
,
S. S.
, 2004, “
Prediction of Growth Factor Effects on Engineered Cartilage Composition Using Deterministic and Stochastic Modeling
,”
Ann. Biomed. Eng.
0090-6964,
32
(
6
), pp.
871
879
.
10.
Saha
,
A. K.
,
Mazumdar
,
J.
, and
Kohles
,
S. S.
, 2005, “
Dynamic Matrix Composition in Engineered Cartilage With Stochastic Supplementation of Growth Factors
,”
Australas. Phys. Eng. Sci. Med.
0158-9938,
28
(
2
), pp.
97
104
.
11.
Pazzano
,
D.
,
Mercier
,
K. A.
,
Moran
,
J. M.
,
Fong
,
S. S.
,
DiBiasio
,
D. D.
,
Rulfs
,
J. X.
,
Kohles
,
S. S.
, and
Bonassar
,
L. J.
, 2000, “
Comparison of Chondrogensis in Static and Perfused Bioreactor Culture
,”
Biotechnol. Prog.
8756-7938,
16
, pp.
893
896
.
12.
Hung
,
C. T.
,
Mauck
,
R. L.
,
Wang
,
C.C.-B.
,
Lima
,
E. G.
, and
Ateshian
,
G. A.
, 2004, “
A Paradigm for Functional Tissue Engineering of Articular Cartilage via Applied Physiologic Deformational Loading
,”
Ann. Biomed. Eng.
0090-6964,
32
(
1
), pp.
35
49
.
13.
Williamson
,
A. K.
,
Chen
,
A. C.
, and
Sah
,
R. L.
, 2001, “
Compressive Properties and Function-Composition Relationships of Developing Bovine Articular Cartilage
,”
J. Orthop. Res.
0736-0266,
19
(
6
), pp.
1113
1121
.
14.
Williamson
,
A. K.
,
Masuda
,
K.
,
Thonar
,
E. J.
, and
Sah
,
R. L.
, 2003, “
Growth of Immature Articular Cartilage In Vitro: Correlated Variation in Tensile Biomechanical and Collagen Network Properties
,”
Tissue Eng.
1076-3279,
9
(
4
), pp.
625
634
.
15.
Guilak
,
F.
, and
Mow
,
V. C.
, 2000, “
The Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions in Articular Cartilage
,”
J. Biomech.
0021-9290,
33
(
12
), pp.
1663
1673
.
16.
Klisch
,
S. M.
,
Chen
,
S. S.
,
Sah
,
R. L.
, and
Hoger
,
A.
, 2003, “
A Growth Mixture Theory for Cartilage with Application to Growth-Related Experiments on Cartilage Explants
,”
J. Biomech. Eng.
0148-0731,
125
(
2
), pp.
169
179
.
17.
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
, 2003, “
Principles of Cell Mechanics for Cartilage Tissue Engineering
,”
Ann. Biomed. Eng.
0090-6964,
31
(
1
), pp.
1
11
.
18.
Poole
,
C. A.
,
Flint
,
M. H.
, and
Beaumont
,
B. W.
, 1987, “
Chondrons in Cartilage: Ultrastructural Analysis of the Pericellular Microenvironment in Adult Human Articular Cartilages
,”
J. Orthop. Res.
0736-0266,
5
(
4
), pp.
509
522
.
19.
Poole
,
A. C.
, 1997, “
Articular Cartilage Chondrons: From, Function, and Failure
,”
J. Anat.
0021-8782,
191
, pp.
1
13
.
20.
Benya
,
P. D.
, and
Shaffer
,
J. D.
, 1982, “
Dedifferentiated Chondrocytes Reexpress the Differentiated Collagen Phenotype When Cultured in Agarose Gels
,”
Cell
0092-8674,
30
(
1
), pp.
215
224
.
21.
Chang
,
J.
, and
Poole
,
C. A.
, 1996, “
Sequestration of Type VI Collagen in the Pericellular Microenvironment of Adult Chrondrocytes Cultured in Agarose
,”
Osteoarthritis Cartilage
1063-4584,
4
(
4
), pp.
275
285
.
22.
Quinn
,
T. M.
,
Schmid
,
P.
,
Hunziker
,
E. B.
, and
Grodzinsky
,
A. J.
, 2002, “
Proteoglycan Deposition Around Chondrocytes in Agarose Culture: Construction of a Physical and Biological Interface for Mechanotransduction in Cartilage
,”
Biorheology
0006-355X,
39
(
1–2
), pp.
27
37
.
23.
Rotter
,
N.
,
Bonassar
,
L. J.
,
Tobias
,
G.
,
Lebl
,
M.
,
Roy
,
A. K.
, and
Vacanti
,
C. A.
, 2002, “
Age Dependence of Biochemical and Biomechanical Properties of Tissue-Engineered Human Septal Cartilage
,”
Biomaterials
0142-9612,
23
(
15
), pp.
3087
3094
.
24.
Christensen
,
R. M.
, 1991,
Mechanics of Composite Materials
,
Krieger
, Malabar, FL, pp.
31
72
.
25.
Eshelby
,
J. D.
, 1956, “
The Continuum Theory of Lattice Defects
,”
Progress in Solid State Physics
,
F.
Seitz
and
D.
Turnbull
, eds.,
Academic
, New York, NY, Vol.
3
, pp.
79
.
26.
Moran
,
J. M.
,
Pazzano
,
D.
, and
Bonassar
,
L. J.
, 2003, “
Characterization of Polylactic Acid-Polyglycolic Acid Composites for Cartilage Tissue Engineering
,”
Tissue Eng.
1076-3279,
9
(
1
), pp.
63
70
.
27.
Montgomery
,
D. C.
, 2001,
Design and Analysis of Experiments
, 5th ed.,
Wiley
, New York, NY.
28.
Roy
,
R.
,
Kohles
,
S. S.
,
Zaporojan
,
V.
,
Peretti
,
G. M.
,
Randolph
,
M. A.
,
Xu
,
J.
, and
Bonassar
,
L. J.
, 2004, “
Analysis of Bending Behavior of Native and Engineered Auricular and Costal Cartilage
,”
J. Biomed. Mater. Res.
0021-9304,
68A
(
4
), pp.
597
602
.
29.
Rotter
,
N.
,
Bonassar
,
L. J.
,
Tobias
,
G.
,
Lebl
,
M.
,
Roy
,
A. K.
, and
Vacanti
,
C. A.
, 2001, “
Age Dependence of Cellular Properties of Human Septal Cartilage: Implications for Tissue Engineering
,”
Arch. Otolaryngol. Head Neck Surg.
0886-4470,
127
(
10
), pp.
1248
1252
.
30.
Khalsa
,
P. S.
, and
Eisenberg
,
S. R.
, 1997, “
Compressive Behavior of Articular Cartilage is Not Completely Explained by Proteoglycan Osmotic Pressure
,”
J. Biomech.
0021-9290,
30
(
6
), pp.
589
594
.
31.
Kohles
,
S. S.
,
Wilson
,
C. G.
, and
Bonassar
,
L. J.
, 2005, “
A Composite Spheres Analysis of Engineered Cartilage Mechanics
.”
Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics
, Portland, OR, June 7–9, Paper, No. 71.
32.
Farndale
,
R. W.
,
Buttle
,
D. J.
, and
Barrett
,
A. J.
, 1986, “
Improved Quantitation and Discrimination of Sulphated Glycosaminoglycans by Use of Dimethylmethylene Blue
,”
Biochim. Biophys. Acta
0006-3002,
883
, pp.
173
177
.
33.
Woessner
,
J. F.
, 1961, “
The Determination of Hydroxyproline in Tissue and Protein Samples Containing Small Portions of this Imino Acid
,”
Arch. Biochem. Biophys.
0003-9861,
93
, pp.
440
447
.
34.
Hollander
,
A. P.
,
Heathfield
,
T. F.
,
Webber
,
C.
,
Iwata
,
Y.
,
Bourne
,
R.
,
Rorabeck
,
C.
, and
Poole
,
A. R.
, 1994, “
Increased Damage to Type II Collagen in Osteoarthritic Articular Cartilage Detected by a New Immunoassay
,”
J. Clin. Invest.
0021-9738,
93
(
4
), pp.
1722
1732
.
35.
Freed
,
L. E.
,
Vunjak-Novakovic
,
G.
,
Biron
,
R. J.
,
Eagles
,
D. B.
,
Lesnoy
,
D. C.
,
Barlow
,
S. K.
, and
Langer
,
R.
, 1994, “
Biodegradable Polymer Scaffolds for Tissue Engineering
,”
Biotechnology
0740-7378,
12
(
7
), pp.
689
693
.
36.
DiMicco
,
M. A.
, and
Sah
,
R. L.
, 2003, “
Dependence of Cartilage Matrix Composition on Biosynthesis, Diffusion, and Reaction
,”
Transp. Porous Media
0169-3913,
50
, pp.
57
73
.
37.
Jones
,
W. R.
,
Ting-Beall
,
H. P.
,
Lee
,
G. M.
,
Kelley
,
S. S.
,
Hochmuth
,
R. M.
, and
Guilak
,
F.
, 1999, “
Alterations in the Young’s Modulus and Volumetric Properties of Chondrocytes Isolated From Normal and Osteoarthritic Human Cartilage
,”
J. Biomech.
0021-9290,
32
(
2
), pp.
119
127
.
38.
Shin
,
D.
, and
Athanasiou
,
K.
, 1999, “
Cytoindentation for Obtaining Cell Biomechanical Properties
,”
J. Orthop. Res.
0736-0266,
17
(
6
), pp.
880
890
.
39.
Athanasiou
,
K. A.
,
Rosenwasser
,
M. P.
,
Buckwalter
,
J. A.
,
Malinin
,
T. I.
, and
Mow
,
V. C.
, 1991, “
Interspecies Comparisons of In Situ Intrinsic Mechanical Properties of Distal Femoral Cartilage
,”
J. Orthop. Res.
0736-0266,
9
(
3
), pp.
330
340
.
40.
Haider
,
M. A.
, and
Guilak
,
F.
, 2002, “
An Axisymmetric Boundary Integral Model for Assessing Elastic Cell Properties in the Micropipette Aspiration Contact Problem
,”
J. Biomech. Eng.
0148-0731,
124
(
5
), pp.
586
595
.
41.
Trickey
,
W. R.
,
Lee
,
G. M.
, and
Guilak
,
F.
, 2000, “
Viscoelastic Properties of Chondrocytes From Normal and Osteoarthritic Human Cartilage
,”
J. Orthop. Res.
0736-0266,
18
(
6
), pp.
891
898
.
42.
Bader
,
D. L.
,
Ohashi
,
T.
,
Knight
,
M. M.
,
Lee
,
D. A.
, and
Sato
,
M.
, 2002, “
Deformation Properties of Articular Chondrocytes: A Critique of Three Separate Techniques
,”
Biorheology
0006-355X,
39
(
1–2
), pp.
69
78
.
43.
Koay
,
E. J.
,
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
, 2003, “
Creep Indentation of Single Cells
,”
J. Biomech. Eng.
0148-0731,
125
(
3
), pp.
334
341
.
44.
Leipzig
,
N. D.
, and
Athanasiou
,
K. A.
, 2005, “
Unconfined Creep Compression of Chondrocytes
,”
J. Biomech.
0021-9290,
38
(
1
), pp.
77
85
.
45.
Knight
,
M. M.
,
van de Breevaart Bravenboer
,
J.
,
Lee
,
D. A.
,
van Osch
,
G. J.
,
Weinans
,
H.
, and
Bader
,
D. L.
, 2002, “
Cell and Nucleus Deformation in Compressed Chondrocyte-Alginate Constructs: Temporal Changes and Calculation of Cell Modulus
,”
Biochim. Biophys. Acta
0006-3002,
1570
(
1
), pp.
1
8
.
46.
Wu
,
J. Z.
,
Herzog
,
W.
, and
Epstein
,
M.
, 1999, “
Modelling of Location- and Time-Dependent Deformation of Chrondrocytes During Cartilage Loading
,”
J. Biomech.
0021-9290,
32
(
6
), pp.
563
572
.
47.
Federico
,
S.
,
Herzog
,
W.
,
Wu
,
J. Z.
, and
La Rosa
,
G.
, 2004, “
A Method to Estimate the Elastic Properties of the Extracellular Matrix of Articular Cartilage
,”
J. Biomech.
0021-9290,
37
(
3
), pp.
401
404
.
48.
Mauck
,
R. L.
,
Seyhan
,
S. L.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
, 2002, “
Influence of Seeding Density and Dynamic Deformational Loading on the Developing Structure/Function Relationships of Chondrocyte-Seeded Agarose Hydrogels
,”
Ann. Biomed. Eng.
0090-6964,
30
(
8
), pp.
1046
1056
.
49.
Michalek
,
A. J.
, and
Iatridis
,
J. C.
, 2007, “
A Numerical Study to Determine Pericellular Matrix Modulus and Evaluate Its Effects on the Micromechanical Environment of Chondrocytes
,”
J. Biomech.
0021-9290,
40
(
6
), pp.
1405
1409
.
50.
Kiviranta
,
P.
,
Rieppo
,
J.
,
Korhonen
,
R. K.
,
Julkunen
,
P.
,
Toyras
,
J.
, and
Jurvelin
,
J. S.
, 2006, “
Collagen Network Primarily Controls Poisson’s Ratio of Bovine Articular Cartilage in Compression
,”
J. Orthop. Res.
0736-0266,
24
(
4
), pp.
690
699
.
51.
Jones
,
R. M.
, 1999,
Mechanics of Composite Materials
, 2nd ed.,
Taylor & Francis
, Philadelphia, PA, pp.
55
186
.
52.
Chahine
,
N. O.
,
Wang
,
C. C.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
, 2004, “
Anisotropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range From Tension to Compression
,”
J. Biomech.
0021-9290,
37
(
8
), pp.
1251
1261
.
53.
Kohles
,
S. S.
, 2004, “
Response Surface Analysis of Flexural and Membrane Stresses to Characterize Flexible Biologic Materials
,”
Proceedings American Society of Biomechanics, 28th Annual Meeting
, Portland, OR, September 8–11, p.
116
.
54.
Jin
,
H.
, and
Lewis
,
J. L.
, 2004, “
Determination of Poisson’s Ratio of Articular Cartilage by Indentation Using Different-Sized Indenters
,”
J. Biomech. Eng.
0148-0731,
126
(
2
), pp.
138
145
.
55.
Vunjak-Novakovic
,
G.
,
Obradovic
,
B.
,
Martin
,
I.
,
Bursac
,
P. M.
,
Langer
,
R.
, and
Freed
,
L. E.
, 1998, “
Dynamic Cell Seeding of Polymer Scaffolds for Cartilage Tissue Engineering
,”
Biotechnol. Prog.
8756-7938,
14
(
2
), pp.
193
202
.
56.
Quinn
,
T. M.
,
Dierickx
,
P.
, and
Grodzinsky
,
A. J.
, 2001, “
Glycosaminoglycan Network Geometry May Contribute to Anisotropic Hydraulic Permeability in Cartilage Under Compression
,”
J. Biomech.
0021-9290,
34
(
11
), pp.
1483
1490
.
57.
Cook
,
R. D.
, and
Young
,
W. C.
, 1985,
Advanced Mechanics of Materials
,
Macmillan
, New York, NY, pp.
49
88
.
58.
Tretheway
,
D. C.
, and
Kohles
,
S. S.
, 2006, “
Instrument Development: An Integrated Optical Tweezer/micro-PIV System to Investigate Cell Biomechanics
,” National Science Foundation, Bioengineering & Environmental Systems Division, Major Research Instrumentation Program, Progress Rep. No. BES-0521637, Portland, OR.
You do not currently have access to this content.