Rigid body total knee replacement (TKR) models with tibiofemoral contact based on elastic foundation (EF) theory utilize simple contact pressure-surface overclosure relationships to estimate joint mechanics, and require significantly less computational time than corresponding deformable finite element (FE) methods. However, potential differences in predicted kinematics between these representations are currently not well understood, and it is unclear if the estimates of contact area and pressure are acceptable. Therefore, the objectives of the current study were to develop rigid EF and deformable FE models of tibiofemoral contact, and to compare predicted kinematics and contact mechanics from both representations during gait loading conditions with three different implant designs. Linear and nonlinear contact pressure-surface overclosure relationships based on polyethylene material properties were developed using EF theory. All other variables being equal, rigid body FE models accurately estimated kinematics predicted by fully deformable FE models and required only 2% of the analysis time. As expected, the linear EF contact model sufficiently approximated trends for peak contact pressures, but overestimated the deformable results by up to 30%. The nonlinear EF contact model more accurately reproduced trends and magnitudes of the deformable analysis, with maximum differences of approximately 15% at the peak pressures during the gait cycle. All contact area predictions agreed in trend and magnitude. Using rigid models, edge-loading conditions resulted in substantial overestimation of peak pressure. Optimal nonlinear EF contact relationships were developed for specific TKR designs for use in parametric or repetitive analyses where computational time is paramount. The explicit FE analysis method utilized here provides a unique approach in that both rigid and deformable analyses can be run from the same input file, thus enabling simple selection of the most appropriate representation for the analysis of interest.

1.
Bartel
,
D. L.
,
Bicknell
,
V. S.
, and
Wright
,
T. M.
, 1986, “
The Effect of Conformity, Thickness, and Material on Stresses in Ultra-High Molecular Weight Components for Total Joint Replacement
,”
J. Bone Jt. Surg., Am. Vol.
0021-9355,
68
, pp.
1041
1051
.
2.
Bartel
,
D. L.
,
Burstein
,
A. H.
,
Toda
,
M. D.
, and
Edwards
,
D. L.
, 1985, “
The Effect of Conformity and Plastic Thickness on Contact Stresses in Metal-Backed Plastic Implants
,”
J. Biomech. Eng.
0148-0731,
107
, pp.
193
199
.
3.
Bartel
,
D. L.
,
Rawlinson
,
J. J.
,
Burstein
,
A. H.
,
Ranawat
,
C. S.
, and
Flynn
,
W. F.
, 1995, “
Stresses in Polyethylene Components of Comtemporary Total Knee Replacements
,”
Clin. Orthop. Relat. Res.
0009-921X,
317
, pp.
76
82
.
4.
Balasubramanian
,
V.
,
Shanbhag
,
A. S.
,
Li
,
G.
, and
Rubash
,
H. E.
, 1997, “
Effect of Flexion on Stresses in UHMWPE Tibial Liners
,”
Trans. Annu. Meet. \M Orthop. Res. Soc.
0149-6433,
22
, p.
793
.
5.
Rullkoetter
,
P.
,
Walker
,
S.
,
Smith
,
D.
,
Komistek
,
R.
, and
Dennis
,
D.
, 2001, “
In vivo Contact Mechanics During a Deep Knee Bend for Subjects having a PCR and PS TKA
,”
Trans. Annu. Meet. \M Orthop. Res. Soc.
0149-6433,
26
, p.
211
.
6.
Sathasivam
,
S.
, and
Walker
,
P. S.
, 1998, “
A Computer Model to Predict Subsurface Damage in Tibial Inserts of Total Knees
,”
J. Orthop. Res.
0736-0266,
16
, pp.
564
571
.
7.
Sathasivam
,
S.
, and
Walker
,
P. S.
, 1997, “
A Computer Model with Surface Friction for the Prediction of Total Knee Kinematics
,”
J. Biomech.
0021-9290,
30
, pp.
177
184
.
8.
Piazza
,
S. J.
, and
Delp
,
S. L.
, 2001, “
Three-Dimensional Dynamic Simulation of Total Knee Replacement Motion During a Step-Up Task
,”
J. Biomech. Eng.
0148-0731,
123
, pp.
599
606
.
9.
Piazza
,
S. J.
,
Delp
,
S. L.
,
Stulberg
,
S. D.
, and
Stern
,
S. H.
, 1998, “
Posterior Tilting of the Tibial Component Decreases Femoral Rollback in Posterior-Substituting Knee Replacement: A Computer Simulation Study
,”
J. Orthop. Res.
0736-0266,
16
, pp.
264
270
.
10.
Rawlinson
,
J. J.
,
Furman
,
B.
,
Li
,
S.
, and
Bartel
,
D.
, 2001, “
Kinematics, Stresses, and Damage from a TKR Simulator and a Finite Element Model
,”
Trans. Annu. Meet. \M Orthop. Res. Soc.
0149-6433,
26
, p.
216
.
11.
Otto
,
J. K.
,
Callaghan
,
J. J.
, and
Brown
,
T. D.
, 2001, “
Mobility and Contact Mechanics of a Rotating Platform Total Knee Replacement
,”
Clin. Orthop. Relat. Res.
0009-921X,
392
, pp.
24
37
.
12.
Fregly
,
B. J.
,
Sawyer
,
W. G.
,
Harman
,
M. K.
, and
Banks
,
S. A.
, 2005, “
Computational Wear Prediction of a Total Knee Replacement from In Vivo Kinematics
,”
J. Biomech.
0021-9290,
38
, pp.
305
314
.
13.
Giddings
,
V. L.
,
Kurtz
,
S. M.
, and
Edidin
,
A. A.
, 2001, “
Total Knee Replacement Polyethylene Stresses During Loading in a Knee Simulator
,”
J. Tribol.
0742-4787,
123
, pp.
842
847
.
14.
Godest
,
A. C.
,
Beaugonin
,
M.
,
Haug
,
E.
,
Taylor
,
M.
, and
Gegson
,
P. J.
, 2002, “
Simulation of a Knee Joint Replacement during Gait Cycle using Explicit Finite Element Analysis
,”
J. Biomech.
0021-9290,
35
, pp.
267
275
.
15.
Halloran
,
J.
,
Petrella
,
A.
, and
Rullkoetter
,
P.
, 2005, “
Explicit Finite Element Modeling of Total Knee Replacement Mechanics
,”
J. Biomech.
0021-9290,
38
, pp.
323
331
.
16.
Laz
,
P.
,
Pal
,
S.
,
Halloran
,
J.
,
Petrella
,
A.
, and
Rullkoetter
,
P.
, 2005, “
Probabilistic FE Modeling of Knee Wear Simulator Mechanics
,”
Trans. Annu. Meet. \M Orthop. Res. Soc.
0149-6433,
30
.
17.
Walker
,
P. S.
,
Blunn
,
G. W.
,
Broome
,
D. R.
,
Perry
,
J.
,
Watkin
,
S. A.
,
Sathasivam
,
S.
,
Dewar
,
M. E.
, and
Paul
,
J. P.
, 1997, “
A Knee Simulating Machine for Performance Evaluation of Total Knee Replacements
,”
J. Biomech.
0021-9290,
30
, pp.
83
89
.
18.
DeHeer
,
D. C.
, and
Hillberry
,
B. M.
, 1992, “
The Effect of Thickness and Nonlinear Material Behavior on Contact Stresses in Polyethylene Tibial Components
,”
Trans. Annu. Meet. \M Orthop. Res. Soc.
0149-6433,
17
, p.
793
.
19.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
, Cambridge, UK.
20.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
, 1991, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
0021-9290,
24
, pp.
1019
1031
.
You do not currently have access to this content.