The effect of several cell-level parameters on the predicted optimal cooling rate Bopt of an arbitrary biological system has been studied using a well-defined water transport model. An extensive investigation of the water transport model revealed three key cell level parameters: reference permeability of the membrane to water Lpg, apparent activation energy ELp, and the ratio of the available surface area for water transport to the initial volume of intracellular water (SAWV). We defined Bopt as the “highest” cooling rate at which a predefined percent of the initial water volume is trapped inside the cell (values ranging from 5% to 80%) at a predefined end temperature (values ranging from 5°C to 40°C). Irrespective of the choice of the percent of initial water volume trapped and the end temperature, an exact and linear relationship exists between Lpg,SAWV, and Bopt. However, a nonlinear and inverse relationship is found between ELp and Bopt. Remarkably, for a variety of biological systems a comparison of the published experimentally determined values of Bopt agreed quite closely with numerically predicted Bopt values when the model assumed 5% of initial water is trapped inside the cell at a temperature of 15°C. This close agreement between the experimental and model predicted optimal cooling rates is used to develop a generic optimal cooling rate chart and a generic optimal cooling rate equation that greatly simplifies the prediction of the optimal rate of freezing of biological systems.

1.
Mazur
,
P.
, 1970, “
Cryobiology: The Freezing of Biological Systems
,”
Science
0036-8075
168
, pp.
939
949
.
2.
Mazur
,
P.
, 1984, “
Freezing of Living Cells: Mechanisms and Implications
,”
Am. J. Physiol.
0002-9513
247
, pp.
C125
C142
.
3.
Mazur
,
P.
, 1963, “
Kinetics of Water Loss from Cells at Subzero Temperatures and the Likelihood of Intracellular Freezing
,”
J. Gen. Physiol.
0022-1295
47
, pp.
347
369
.
4.
Mazur
,
P.
,
Leibo
,
S. P.
, and
Chu
,
E. H. Y.
, 1972, “
A Two Factor Hypothesis of Freezing Injury
,”
Exp. Cell Res.
0014-4827
71
, pp.
345
355
.
5.
Lovelock
,
J. E.
, 1953, “
Haemolysis of Human Red Blood Cells by Freezing and Thawing
,”
Biochim. Biophys. Acta
0006-3002
10
, pp.
414
426
.
6.
Molisch
,
H.
, 1857, “
Untersuchen über das Erfieren der Pflanzen
”; Reprinted in English, 1982,
Cryo-Lett.
3
, pp.
331
390
.
7.
Diller
,
K. R.
, and
Cravalho
,
E. G.
, 1970, “
A Cryomicroscope for the Study of Freezing and Thawing Process in Biological Systems
,”
Cryobiology
0011-2240
7
, pp.
191
199
.
8.
Diller
,
K. R.
, 1982, “
Quantitative Low Temperature Optical Microscopy of Biological Systems
,”
J. Microsc.
0022-2720
126
, pp.
9
28
.
9.
Steponkus
,
P. L.
,
Dowgert
,
M. F.
,
Ferguson
,
J. R.
, and
Levin
,
R. L.
, 1983, “
Cryomicroscopy of Isolated Plant Protoplasts
,”
Cryobiology
0011-2240
20
, pp.
1138
1162
.
10.
McGrath
,
J. J.
, 1988, “
Membrane Transport Properties
,”
Low Temperature Biotechnology: Emerging Applications and Engineering Contributions, ASME
, New York,
J. J.
McGrath
and
K. R.
Diller
, eds., ASME Paper No. BED-10, HTD-98, pp.
273
330
.
11.
Cosman
,
M. D.
,
Toner
,
M.
,
Kandel
,
J.
, and
Cravalho
,
E. G.
, 1989, “
An Integrated Cryomicroscopy System
,”
Cryo-Letters
10
, pp.
17
38
.
12.
Pazhayannur
,
P. V.
, and
Bischof
,
J. C.
, 1997, “
Measurement and Simulation of Water Transport During Freezing in Mammalian Liver Tissue
,”
ASME J. Biomech. Eng.
0148-0731
119
, pp.
269
277
.
13.
Devireddy
,
R. V.
, and
Bischof
,
J. C.
, 1998, “
Measurement of Water Transport During Freezing in Mammalian Liver Tissue-Part II: The Use of Differential Scanning Calorimetry
,”
ASME J. Biomech. Eng.
0148-0731
120
pp.
559
569
.
14.
Devireddy
,
R. V.
,
Smith
,
D. J.
, and
Bischof
,
J. C.
, 1999, “
Mass Transfer During Freezing in Rat Prostate Tumor Tissue
,”
AIChE J.
0001-1541
45
(
3
), pp.
639
654
.
15.
Devireddy
,
R. V.
,
Coad
,
J. E.
, and
Bischof
,
J. C.
, 2001, “
Microscopic and Calorimetric Assessment of Freezing Processes in Uterine Fibroid Tissue
,”
Cryobiology
0011-2240
42
, pp.
225
243
.
16.
Devireddy
,
R. V.
,
Raha
,
D.
, and
Bischof
,
J. C.
, 1998, “
Measurement of Water Transport During Freezing in Cell Suspensions Using a Differential Scanning Calorimeter
,”
Cryobiology
0011-2240
36
, pp.
124
155
.
17.
Devireddy
,
R. V.
,
Swanlund
,
D. J.
,
Roberts
,
K. P.
, and
Bischof
,
J. C.
, 1999, “
Sub-Zero Water Permeability Parameters of Mouse Spermatozoa in the Presence of Extracellular Ice and Cryoprotective Agents
,”
Biol. Reprod.
0006-3363
61
(
3
), pp.
764
775
.
18.
Devireddy
,
R. V.
,
Swanlund
,
D. J.
,
Roberts
,
K. P.
,
Pryor
,
J. L.
, and
Bischof
,
J. C.
, 2000, “
The Effect of Extracellular Ice and Cryoprotective Agents on the Water Permeability Parameters of Human Sperm Plasma Membrane During Freezing
,”
Hum. Reprod.
0268-1161
15
, pp.
1125
1135
.
19.
Devireddy
,
R. V.
,
Olin
,
T.
,
Vincente
,
W.
,
Troedsson
,
M. H. T.
,
Bischof
,
J. C.
, and
Roberts
,
K. P.
, 2002, “
Cryopreservation of Equine Spermatozoa: Optimal Cooling Rates in the Presence and Absence of Cryoprotective Agents
,”
Biol. Reprod.
0006-3363
66
, pp.
222
231
.
20.
Devireddy
,
R. V.
, and
Bischof
,
J. C.
, 2003, “
Recent Advances in Cryobiology Using Calorimetry
,”
Low Temperature and Cryogenic Refrigeration
,
S.
Kakac
,
H.
Smirnov
, and
M. R.
Mila
, eds.,
Kluwer
, Dordrecht, pp.
265
294
.
21.
Yuan
,
S.
, and
Diller
,
K. R.
, 2001, “
Study of Freezing Biological Systems Using Optical Differential Scanning Calorimeter
,”
ASME Summer BED Conference Proceedings
50
, pp.
117
118
.
22.
Diller
,
K. R.
, 2002, “
New Techniques in Cryomicroscopy
,”
Cryobiology
0011-2240
45
, pp.
250
251
.
23.
Levin
,
R. L.
,
Cravalho
,
E. G.
, and
Huggins
,
C. G.
, 1976, “
A Membrane Model Describing the Effect of Temperature on Water Conductivity of Erythrocyte Membranes at Subzero Temperatures
,”
Cryobiology
0011-2240
13
, pp.
415
429
.
24.
Leibo
,
S. P.
, 1980, “
Water Permeability and its Activation Energy of Fertilized and Unfertilized Mouse Ova
,”
J. Membr. Biol.
0022-2631
53
, pp.
179
188
.
25.
Toner
,
M.
,
Cravalho
,
E. G.
, and
Karel
,
M.
, 1991, “
Thermodynamics and Kinetics of Intracellular Ice Formation During Freezing of Biological Cells
,”
J. Appl. Phys.
0021-8979
10
, pp.
463
465
.
26.
Levin
,
R. L.
,
Cravalho
,
E. G.
, and
Huggins
,
C. G.
, 1977, “
Effect of Solution Non-Ideality on Erythrocytes Volume Regulation
,”
Biochim. Biophys. Acta
0006-3002
465
, pp.
179
190
.
27.
Mansoori
,
G. A.
, 1975, “
Kinetics of Water Loss from Cells at Subzero Centigrade Temperatures
,”
Cryobiology
0011-2240
12
, pp.
34
45
.
28.
Levin
,
R. L.
,
Ushiyama
,
M.
, and
Cravalho
,
E. G.
, 1979, “
Water Permeability of Yeast Cells at Sub-Zero Temperatures
,”
J. Membr. Biol.
0022-2631
46
, pp.
91
124
.
29.
Toner
,
M.
,
Cravalho
,
E. G.
, and
Armant
,
D. R.
, 1990, “
Water Transport and Estimated Transmembrane Potential During Freezing of Mouse Oocytes
,”
J. Membr. Biol.
0022-2631
115
, pp.
261
272
.
30.
Mazur
,
P.
, 1990, “
Equilibrium, Quasi-Equilibrium, and Nonequilibrium Freezing of Mammalian Embryos
,”
Cell Biophys.
0163-4992
17
, pp.
53
92
.
31.
Thirumala
,
S.
, 2004, “
Optimal Rate of Freezing Biological Systems
,” M.S. thesis, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA.
32.
McGrath
,
J. J.
, 1985, “
Preservation of Biological Material by Freezing and Thawing
,”
Heat Transfer in Medicine and Biology
,
A.
Shitzer
and
R. C.
Eberhart
, eds.,
Plenum
, New York, pp.
185
238
.
33.
Scheiwe
,
M. W.
, and
Korber
,
C.
, 1984, “
Thermally Defined Cryomicroscopy and Thermodynamic Analysis in Lymphocyte Freezing
,”
Cryobiology
0011-2240
21
, pp.
93
105
.
34.
Harris
,
C. L.
,
Toner
,
M.
,
Hubel
,
A.
,
Cravalho
,
E. G.
,
Yarmush
,
M. L.
, and
Tompkins
,
R. G.
, 1991, “
Cryopreservation of Isolated Hepatocytes: Intracellular Ice Formation Under Various Chemical and Physical Conditions
,”
Cryobiology
0011-2240
28
, pp.
436
444
.
35.
Toner
,
M.
,
Tompkins
,
R. G.
,
Cravalho
,
E. G.
, and
Yarmush
,
M. L.
, 1992, “
Transport Phenomena During Freezing of Isolated Hepatocytes
,”
AIChE J.
0001-1541
38
, pp.
1512
1522
.
36.
Smith
,
D. J.
,
Schulte
,
M.
, and
Bischof
,
J. C.
, 1998, “
The Effect of Dimethylsulfoxide on the Water Transport Response of Rat Hepatocytes During Freezing
,”
ASME J. Biomech. Eng.
0148-0731
120
, pp.
549
558
.
37.
Henry
,
M. A.
,
Noiles
,
E. E.
,
Gao
,
D.
,
Mazur
,
P.
, and
Critser
,
J. K.
, 1993, “
Cryopreservation of Human Spermatozoa. IV. The Effects of Cooling and Warming Rate on the Maintenance of Motility, Plasma Membrane Integrity, and Mitochondrial Function
,”
Fertil. Steril.
0015-0282
60
, pp.
911
918
.
38.
Devireddy
,
R. V.
Brooke
,
F.
,
Godke
,
R. A.
, and
Leibo
,
S. P.
, 2004, “
Subzero Water Transport Characteristics of Boar Spermatozoa Confirm Observed Optimal Cooling Rates
,”
Mol. Reprod. Dev.
1040-452X
67
, pp.
446
457
.
39.
Thirumala
,
S.
,
Ferrer
,
M. S.
,
Al-Jarrah
,
A.
,
Eilts
,
B. E.
,
Paccamonti
,
D. L.
, and
Devireddy
,
R. V.
, 2003, “
Cryopreservation of Canine Spermatozoa: Theoretical Prediction of Optimal Cooling Rates in the Presence and Absence of Cryoprotective Agents
,”
Cryobiology
0011-2240
47
, pp.
109
124
.
40.
Smith
,
D. J.
,
Josephson
,
S. J.
, and
Bischof
,
J. C.
, 1997, “
A Model of Cryosurgical Destruction in AT-1 Prostate Tumor Based on Cellular Damage Mechanisms
,”
Advances in Heat and Mass Transfer in Biotechnology
,
S.
Clegg
, ed., BED-Vol. 37. HTD-Vol. 355,
Plenum
, New York, pp.
149
150
.
41.
Thirumala
,
S.
,
Huang
,
C.
,
Dong
,
Q.
,
Tiersch
,
T. R.
, and
Devireddy
,
R. V.
, 2005, “
A Theoretically Estimated Optimal Cooling Rate For the Cryopreservation of Sperm Cells From A Live-Bearing Fish, The Green Swordtail Xiphophorus helleri
,”
Theriogenology
0093-691X (in press).
42.
Huang
,
C.
,
Dong
,
Q.
,
Walter
,
R. B.
, and
Tiersch
,
T. R.
, 2004, “
Sperm Cryopreservation of Green Swordtail Xiphophorus helleri, A Fish With Internal Fertilization
,”
Cryobiology
0011-2240
48
, pp.
295
308
.
You do not currently have access to this content.