Accurate estimation of the wall stress distribution in an abdominal aortic aneurysm (AAA) may prove clinically useful by predicting when a particular aneurysm will rupture. Appropriate constitutive models for both the wall and the intraluminal thrombus (ILT) found in most AAA are necessary for this task. The purpose of this work was to determine the mechanical properties of ILT within AAA and to derive a more suitable constitutive model for this material. Uniaxial tensile testing was carried out on 50 specimens, including 14 longitudinally oriented and 14 circumferentially oriented specimens from the luminal region of the ILT, and 11 longitudinally oriented and 11 circumferentially oriented specimens from the medial region. A two-parameter, large-strain, hyperelastic constitutive model was developed and used to fit the uniaxial tensile testing data for determination of the material parameters. Maximum stiffness and strength were also determined from the data for each specimen. Scanning electron microscopy (SEM) was conducted to study the regional microstructural difference. Our results indicate that the microstructure of ILT differs between the luminal, medial, and abluminal regions, with the luminal region stronger and stiffer than the medial region. In all cases, the constitutive model fit the experimental data very well R2>0.98. No significant difference was found for either of the two material parameters between longitudinal and circumferential directions, but a significant difference in material parameters, stiffness, and strength between the luminal and medial regions was determined p<0.01. Therefore, our results suggest that ILT is an inhomogeneous and possibly isotropic material. The two-parameter, hyperelastic, isotropic, incompressible material model derived here for ILT can be easily incorporated into finite element models for simulation of wall stress distribution in AAA.

1.
Di Martino
,
E.
,
Mantero
,
S.
,
Inzoli
,
F.
,
Melissano
,
G.
,
Astore
,
D.
,
Chiesa
,
R.
, and
Fumero
,
R.
,
1998
, “
Biomechanics of Abdominal Aortic Aneurysm in the Presence of Endoluminal Thrombus: Experimental Characterization and Structural Static Computational Analysis
,”
Eur. J. Vasc. Endovasc Surg.
,
15
, pp.
290
299
.
2.
Elger
,
D. F.
,
Blackketter
,
D. M.
,
Budwig
,
R. S.
, and
Johansen
,
K. H.
,
1996
, “
The Influence of Shape on the Stress in Model Abdominal Aneurysms
,”
ASME J. Biomech. Eng.
,
118
, pp.
326
332
.
3.
Inzoli
,
F.
,
Boschetti
,
F.
,
Zappa
,
M.
,
Longo
,
T.
, and
Fumero
,
R.
,
1993
, “
Biomechanical Factors in Abdominal Aortic Aneurysm Rupture
,”
Eur. J. Vasc. Surg.
,
7
, pp.
667
674
.
4.
Mower
,
W. R.
,
Baraff
,
L. J.
, and
Sneyd
,
J.
,
1993
, “
Stress Distributions in Vascular Aneurysms: Factor Affecting Risk of Aneurysm Rupture
,”
J. Surg. Res.
55
, pp.
155
161
.
5.
Mower
,
W. R.
,
Quinones
,
W. J.
, and
Gambhir
,
S. S.
,
1997
, “
Effect of Intraluminal Thrombus on Abdominal Aortic Aneurysm Wall Stress
,”
J. Vasc. Surg.
,
26
, pp.
602
608
.
6.
Raghavan
,
M. L.
,
Vorp
,
D. A.
,
Federle
,
M. P.
,
Makaroun
,
M. S.
, and
Webster
,
M. W.
,
2000
, “
Wall Stress Distribution on Three-Dimensionally Reconstructed Models of Human Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
31
, No.
4
, pp.
760
769
.
7.
Stringfellow
,
M. M.
,
Lawrence
,
P. F.
, and
Stringfellow
,
R. G.
,
1987
, “
The Influence of Aorta-Aneurysm Geometry Upon Stress in the Aneurysm Wall
,”
J. Surg. Res.
,
42
, pp.
425
433
.
8.
Vorp
,
D. A.
,
Wang
,
D. H. J.
,
Raghavan
,
M. L.
, and
Webster
,
M. W.
,
1998
, “
Effect of Shape of Intraluminal Thrombus on Wall Stress In Abdominal Aortic Aneurysm
,”
Ann. Biomed. Eng.
,
26
, Suppl. 1, p.
68
68
.
9.
Vorp
,
D. A.
,
Raghavan
,
M. L.
, and
Marshall
,
W. W.
,
1998
, “
Mechanical Wall Stress in Abdominal Aneurysm: Influence of Diameter and Asymmetry
,”
J. Vasc. Surg.
,
27
, pp.
632
639
.
10.
Harter
,
L. P.
,
Gross
,
B. H.
,
Callen
,
R. A.
, and
Barth
,
R. A.
,
1982
, “
Ultrasonic Evaluation of Abdominal Aortic Thrombus
,”
J. Ultrasound Med.
,
1
, pp.
315
318
.
11.
Vorp
,
D. A.
,
Raghavan
,
M. L.
,
Muluk
,
S. C.
,
Makaroun
,
M. S.
,
Steed
,
D. L.
, and
Shapiro
,
R.
,
1996
, “
Wall Strength and Stiffness of Aneurysmal and Nonaneurysmal Abdominal Aorta
,”
Ann. N.Y. Acad. Sci.
,
800
, pp.
274
276
.
12.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model And Evaluation of Its Applicability
,”
J. Biomech.
,
33
, pp.
475
482
.
13.
Vorp
,
D. A.
,
Mandarino
,
W. A.
,
Webster
,
M. W.
, and
Gorcsan
,
J.
, 3rd,
1996
, “
Potential Influence of Intraluminal Thrombus on Abdominal Aortic Aneurysm as Assessed by a New Non-Invasive Method
,”
Cardiovasc. Surg.
,
4
, No.
6
, pp.
732
739
.
14.
Roach
,
M. R.
, and
Burton
,
A. C.
,
1975
, “
The Reason for the Shape of the Distensibility Curves of Arteries
,”
Can. J. Biochem. Physiol.
,
35
, pp.
681
690
.
15.
Raghavan
,
M. L.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
1996
, “
Ex-Vivo Biomechanical Behavior of Abdominal Aortic Aneurysm: Assessment Using a New Mathematical Model
,”
Ann. Biomed. Eng.
,
24
, pp.
573
582
.
16.
da Silva
,
E. S.
,
Rodrigues
,
A. J.
,
de Tolosa
,
E. M. C.
,
Rodrigues
,
C. J.
,
Villas Boas do Prado
,
G.
, and
Nakamoto
,
J. C.
,
2000
, “
Morphology and Diameter of Infrarenal Aortic Aneurysms: A Prospective Autopsy Study
,”
Cardiovasc. Surg.
,
8
, No.
7
, pp.
526
532
.
17.
Rivlin
,
R. S.
, and
Saunders
,
D. W.
,
1951
, “
Large Elastic Deformation of Isotropic Materials, VII. Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc. London, Ser. A
,
A243
, pp.
251
288
.
18.
Humphrey
,
J. D.
, and
Yin
,
F. C.
,
1987
, “
On Constitutive Relations and Finite Deformation of Passive Cardiac Tissue. I: A Pseudostrain-Energy Function
,”
ASME J. Biomech. Eng.
,
109
, pp.
298
304
.
19.
Adolph
,
R.
,
Vorp
,
D. A.
,
Steed
,
D. L.
,
Webster
,
M. W.
,
Kameneva
,
M. V.
, and
Watkins
,
S. C.
,
1997
, “
Cellular Content and Permeability of Intraluminal Thrombus in Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
25
, pp.
916
926
.
20.
Sacks
,
M. S.
,
Vorp
,
D. A.
,
Raghavan
,
M. L.
,
Federle
,
M. P.
, and
Webster
,
M. W.
,
1999
, “
In-Vivo 3D Surface Geometry of Abdominal Aortic Aneurysm
,”
Ann. Biomed. Eng.
,
27
, pp.
469
479
.
You do not currently have access to this content.