Current brain deformation models have predominantly reflected solid constitutive relationships generated from empirical ex vivo data and have largely overlooked interstitial hydrodynamic effects. In the context of a technique to update images intraoperatively for image-guided neuronavigation, we have developed and quantified the deformation characteristics of a three-dimensional porous media finite element model of brain deformation in vivo. Results have demonstrated at least 75–85 percent predictive capability, but have also indicated that interstitial hydrodynamics are important. In this paper we investigate interstitial pressure transient behavior in brain tissue when subjected to an acute surgical load consistent with neurosurgical events. Data are presented from three in vivo porcine experiments where subsurface tissue deformation and interhemispheric pressure gradients were measured under conditions of an applied mechanical deformation and then compared to calculations with our three-dimensional brain model. Results demonstrate that porous-media consolidation captures the hydraulic behavior of brain tissue subjected to comparable surgical loads and that the experimental protocol causes minimal trauma to porcine brain tissue. Working values for hydraulic conductivity of white and gray matter are also reported and an assessment of transient pressure gradient effects with respect to deformation is provided. [S0148-0731(00)00804-9]

1.
Walsh
,
E. K.
,
Furniss
,
W.
, and
Schettini
,
A.
,
1977
, “
On Measurement of Brain Elastic Response in Vivo
,”
Am. J. Physiol.
,
232
, pp.
R27–R30
R27–R30
.
2.
Walsh
,
E. K.
, and
Schettini
,
A.
,
1984
, “
Calculation of Brain Elastic Parameters in Vivo
,”
Am. J. Physiol.
,
247
, pp.
R693–R700
R693–R700
.
3.
Miller
,
K.
, and
Chinzei
,
K.
,
1997
, “
Constitutive Modeling of Brain Tissue: Experiment and Theory
,”
J. Biomech.
,
30
, No.
11/12
, pp.
1115
1121
.
4.
Ljung
,
C.
,
1975
, “
A Model for Brain Deformation Due to Rotation of the Skull
,”
J. Biomech.
,
8
, pp.
263
274
.
5.
Pamidi
,
M. R.
, and
Advani
,
S. H.
,
1978
, “
Nonlinear Constitutive Relations for Human Brain Tissue
,”
ASME J. Biomech. Eng.
,
100
, pp.
44
48
.
6.
Mendis
,
K. K.
,
Stalnaker
,
R. L.
, and
Advani
,
S. H.
,
1995
, “
A Constitutive Relationship for Large Deformation Finite Element Modeling of Brain Tissue
,”
ASME J. Biomech. Eng.
,
117
, pp.
279
285
.
7.
Donnelly
,
B. R.
, and
Medige
,
J.
,
1997
, “
Shear Properties of Human Brain Tissue
,”
ASME J. Biomech. Eng.
,
119
, No.
4
, pp.
423
432
.
8.
Miller
,
K.
,
1999
, “
Constitutive Model of Brain Tissue Suitable for Finite Element Analysis of Surgical Procedures
,”
J. Biomech.
,
32
, pp.
531
537
.
9.
Khalil
,
T. B.
, and
Hubbard
,
R. P.
,
1977
, “
Parametric Study of Head Response by Finite Element Modeling
,”
J. Biomech.
,
10
, pp.
119
132
.
10.
Ruan
,
J. S.
,
Khalil
,
T. B.
, and
King
,
A. I.
,
1991
, “
Human Head Dynamic Response to Side Impact by Finite Element Modeling
,”
ASME J. Biomech. Eng.
,
113
, pp.
276
283
.
11.
Ruan
,
J. S.
,
Khalil
,
T. B.
, and
King
,
A. I.
,
1994
, “
Dynamic-Response of the Human Head to Impact by 3-Dimensional Finite-Element Analysis
,”
ASME J. Biomech. Eng.
,
116
, No.
1
, pp.
44
50
.
12.
Ruan
,
J. S.
, and
Prasad
,
P.
,
1995
, “
Coupling of a Finite-Element Human Head Model With a Lumped-Parameter Hybrid-III Dummy Model: Preliminary Results
,”
J. Neurotrauma
,
12
, No.
4
, pp.
725
734
.
13.
King
,
A. I.
,
Ruan
,
J. S.
,
Zhou
,
C.
,
Hardy
,
W. N.
, and
Khalil
,
T. B.
,
1995
, “
Recent Advances in Biomechanics of Brain Injury Research—A Review
,”
J. Neurotrauma
,
12
, No.
4
, pp.
651
658
.
14.
Grimson, W. E. L., Kikinis, R., Jolesz, F. A., and Black, P. M., 1999, “Image-Guided Surgery,” Sci. Am., pp. 62–69.
15.
Roberts
,
D. W.
,
Hartov
,
A.
,
Kennedy
,
F.
,
Miga
,
M. I.
, and
Paulsen
,
K. D.
,
1998
, “
Intraoperative Brain Shift and Deformation: a Quantitative Clinical Analysis of Cortical Displacements in 28 Cases
,”
Neurosurgery
,
43
, No.
4
, pp.
749
760
.
16.
Hill
,
D. L. G.
,
Maurer
,
C. R.
,
Maciunas
,
R. J.
,
Barwise
,
J. A.
,
Fitzpatrick
,
J. M.
, and
Wang
,
M. Y.
,
1998
, “
Measurement of Intraoperative Brain Surface Deformation Under a Craniotomy
,”
Neurosurgery
,
43
, No.
3
, pp.
514
528
.
17.
Wirtz
,
C. R.
,
Bonsanto
,
M. M.
,
Knauth
,
M.
,
Tronnier
,
V. M.
,
Albert
,
F. K.
,
Staubert
,
A.
, and
Kunze
,
S.
,
1997
, “
Intraoperative Magnetic Resonance Imaging to Update Interactive Navigation in Neurosurgery: Method and Preliminary Experience
,”
Comput. Aided Surg.
,
2
, pp.
172
179
.
18.
Steinmeier
,
R.
,
Fahlbusch
,
R.
,
Ganslandt
,
O.
,
Nimsky
,
C.
,
Buchfelder
,
M.
,
Kaus
,
M.
,
Heigl
,
T.
,
Kuth
,
R.
, and
Huk
,
W.
,
1998
, “
Intraoperative Magnetic Resonance Imaging With the Magnetom Open Scanner: Concepts, Neurosurgical Indications, and Procedures: A Preliminary Report
,”
Neurosurgery
,
43
, No.
4
, pp.
739
748
.
19.
Roberts
,
D. W.
,
Miga
,
M. I.
,
Kennedy
,
F.
,
Hartov
,
A.
, and
Paulsen
,
K. D.
,
1999
, “
Intraoperatively Updated Neuroimaging Using Brain Modeling and Sparse Data
,”
Neurosurgery
,
45
, No.
5
, pp.
1199
1207
.
20.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
, pp.
73
84
.
21.
Spilker
,
R. L.
, and
Suh
,
J. K.
,
1990
, “
Formulation and Evaluation of a Finite Element Model for the Biphasic Model of Hydrated Soft Tissue
,”
Comput. Struct.
,
35
, No.
4
, pp.
425
439
.
22.
Spilker
,
R. L.
, and
Maxian
,
T. A.
,
1990
, “
A Mixed-Penalty Finite Element Formulation of the Linear Biphasic Theory for Soft Tissues
,”
Int. J. Numer. Methods Eng.
,
30
, pp.
1063
1082
.
23.
Suh
,
J. K.
,
Spilker
,
R. L.
, and
Holmes
,
M. H.
,
1991
, “
A Penalty Finite Element Analysis for Nonlinear Mechanics of Biphasic Hydrated Soft Tissue Under Large Deformation
,”
Int. J. Numer. Methods Eng.
,
32
, pp.
1411
1439
.
24.
Nagashima
,
T.
,
Shirakuni
,
T.
, and
Rapoport
,
S. I.
,
1990
, “
A Two-Dimensional, Finite Element Analysis of Vasogenic Brain Edema
,”
Neurol. Med. Chir. (Tokyo)
,
30
, pp.
1
9
.
25.
Nagashima
,
T.
,
Tada
,
Y.
,
Hamano
,
S.
,
Skakakura
,
M.
,
Masaoka
,
K.
,
Tamaki
,
N.
, and
Matsumoto
,
S.
,
1990
, “
The Finite Element Analysis of Brain Oedema Associated With Intracranial Meningiomas
,”
Acta Neurochir. Suppl. (Wien)
,
51
, pp.
155
157
.
26.
Nagashima
,
T.
,
Tamaki
,
N.
,
Takada
,
M.
, and
Tada
,
Y.
,
1994
, “
Formation and Resolution of Brain Edema Associated With Brain Tumors. A Comprehensive Theoretical Model and Clinical Analysis
,”
Acta Neurochir. Suppl. (Wien)
,
60
, pp.
165
167
.
27.
Basser
,
P. J.
,
1992
, “
Interstitial Pressure, Volume, and Flow During Infusion Into Brain Tissue
,”
Microvasc. Res.
,
44
, pp.
143
165
.
28.
Taylor
,
D.
,
Bert
,
J.
, and
Bowen
,
B.
,
1990
, “
A Mathematical Model of Interstitial Transport. I. Theory
,”
Microvasc. Res.
,
39
, pp.
253
278
.
29.
Taylor
,
D.
,
Bert
,
J.
, and
Bowen
,
B.
,
1990
, “
A Mathematical Model of Interstitial Transport. II. Microvasculature Exchange in the Mesentery
,”
Microvasc. Res.
,
39
, pp.
279
306
.
30.
Kalyanasundaram
,
S.
,
Calhoun
,
V. D.
, and
Leong
,
K. W.
,
1997
, “
A Finite Element Model for Predicting the Distribution of Drugs Delivered Intracranially to the Brain
,”
Am. J. Physiol.
,
273
, pp.
R1810–R1821
R1810–R1821
.
31.
Paulsen
,
K. D.
,
Miga
,
M. I.
,
Kennedy
,
F. E.
,
Hoopes
,
P. J.
,
Hartov
,
A.
, and
Roberts
,
D. W.
,
1999
, “
A Computational Model for Tracking Subsurface Tissue Deformation During Stereotactic Neurosurgery
,”
IEEE Trans. Biomed. Eng.
,
46
, No.
2
, pp.
213
225
.
32.
Miller
,
K.
,
1998
, “
Modeling Soft Tissue Using Biphasic Theory—A Word of Caution
,”
Comput. Methods Biomech. Biomed. Eng.
,
1
, pp.
261
263
.
33.
Hakim
,
S.
,
Venegas
,
J. G.
, and
Burton
,
J. D.
,
1976
, “
The Physics of the Cranial Cavity, Hydrocephalus and Normal Pressure Hydrocephalus: Mechanical Interpretation and Mathematical Model
,”
Surg. Neurol.
,
5
, pp.
187
210
.
34.
Winston
,
K. R.
, and
Breeze
,
R. E.
,
1991
, “
Hydraulic Regulation of Brain Parenchymal Volume
,”
Neurol. Res.
,
13
, pp.
237
247
.
35.
Doczi
,
T.
,
1993
, “
Volume Regulation of the Brain Tissue—a Survey
,”
Acta Neurochir.
,
121
, pp.
1
8
.
36.
Miga
,
M. I.
,
Paulsen
,
K. D.
,
Hoopes
,
P. J.
,
Kennedy
,
F. E.
,
Hartov
,
A.
, and
Roberts
,
D. W.
,
2000
, “
In-Vivo Analysis of Heterogeneous Brain Deformation Computations for Model-Updated Image Guidance
,”
Comput. Methods Biomech. Biomed. Eng.
,
3
, No.
2
, pp.
129
146
.
37.
Miga
,
M. I.
,
Paulsen
,
K. D.
,
Hoopes
,
P. J.
,
Kennedy
,
F. E.
,
Hartov
,
A.
, and
Roberts
,
D. W.
,
2000
, “
In Vivo Quantification of a Homogeneous Brain Deformation Model for Updating Preoperative Images During Surgery
,”
IEEE Trans. Biomed. Eng.
,
47
, No.
2
, pp.
266
273
.
38.
Schroeder, W., Martin, K., and Lorensen, B., 1996, The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics, Prentice-Hall, New Jersey.
39.
Sullivan
,
J. M. J.
,
Charron
,
G.
, and
Paulsen
,
K. D.
,
1997
, “
A Three Dimensional Mesh Generator for Arbitrary Multiple Material Domains
,”
Finite Elem. Anal. Design
,
25
, pp.
219
241
.
40.
Miga, M. I., 1998, “Development and Quantification of a 3D Brain Deformation Model for Model-Updated Image-Guided Stereotactic Neurosurgery, Dartmouth College, Thayer School of Engineering, Hanover, NH.
41.
Biot
,
M. A.
,
1941
, “
General Theory of Three-Dimensional Consolidation
,”
J. Appl. Phys.
,
12
, pp.
155
164
.
42.
Bramely, R., and Wang, X., 1997, SPLIB: A Library of Iterative Methods for Sparse Linear Systems, Indiana University, Dept. of Computer Science, Bloomington, IN.
43.
Miga
,
M. I.
,
Paulsen
,
K. D.
, and
Kennedy
,
F. E.
,
1998
, “
Von Neumann Stability Analysis of Biot’s General Two-Dimensional Theory of Consolidation
,”
Int. J. Numer. Methods Eng.
,
43
, pp.
955
974
.
44.
Marmarou
,
A.
,
Hochwald
,
G.
,
Nakamura
,
T.
,
Tanaka
,
K.
,
Weaver
,
J.
, and
Dunbar
,
J.
,
1994
, “
Brain Edema Resolution by CSF Pathways and Brain Vasculature in Cats
,”
Am. J. Physiol.
,
267
, No.
2
, pp.
H514–H520
H514–H520
.
45.
Wolfla
,
C. E.
,
Luerssen
,
T. G.
,
Bowman
,
R. M.
, and
Putty
,
T. K.
,
1996
, “
Brain Tissue Pressure Gradients Created by Expanding Frontal Epidural Mass Lesion
,”
J. Neurosurg.
,
84
, pp.
642
647
.
46.
Wolfla
,
C. E.
,
Luerssen
,
T. G.
, and
Bowman
,
R. M.
,
1997
, “
Regional Brain Tissue Pressure Gradients Created by Expanding Extradural Temporal Mass Legion
,”
J. Neurosurg.
,
86
, pp.
505
510
.
47.
Miga, M. I., Paulsen, K. D., Kennedy, F. E., Hoopes, P. J., Hartov, A., and Roberts, D. W., 1998, “Modeling Surgical Loads to Account for Subsurface Tissue Deformation During Stereotactic Neurosurgery,” IEEE SPIE Proc. Laser-Tissue Interaction IX, Part B: Soft-Tissue Modeling, 3254, pp. 501–511.
48.
Muthupillai
,
R.
,
Rossman
,
P. J.
,
Lomas
,
D. J.
,
Greenleaf
,
J. F.
,
Riederer
,
S. J.
, and
Ehman
,
R. L.
,
1995
, “
Magnetic Resonance Elastography by Direct Visualization of Propagating Acoustic Strain Waves
,”
Science
,
269
, pp.
1854
1857
.
You do not currently have access to this content.