To investigate the potential application of thermal therapy in the treatment of prostate cancer, the effects of supraphysiological temperatures (40–70°C) for clinically relevant time periods (∼15 minutes) were experimentally studied on attached Dunning AT-1 rat prostate cancer cells using multiple assays. The membrane and reproductive machinery were the targets of injury selected for this study. In order to assess membrane injury, the leakage of calcein was measured dynamically, and the uptake of PI was measured post-heating (1–3 hours). Clonogenicity was used as a measure of injury to the reproductive machinery 7 days post-injury after comparable thermal insults. Experimental results from all three assays show a broad trend of increasing injury with an increase in temperature and time of insult. Membrane injury, as measured by the fluorescent dye assays, does not correlate with clonogenic survival for many of the thermal histories investigated. In particular, the calcein assay at temperatures of ⩽40°C led to measurable injury accumulation (dye leakage), which was considered sublethal, as shown by significant survival for comparable insult in the clonogenic assay. Additionally, the PI uptake assay used to measure injury post-thermal insult shows that membrane injury continues to accumulate after thermal insult at temperatures ⩾50°C and may not always correlate with clonogenicity at hyperthermic temperatures such as 45°C. Last, although the clonogenic assay yields the most accurate cell survival data, it is difficult to acquire these data at temperatures ⩾50°C because the thermal transients in the experimental setup are significant as compared to the time scale of the experiment. To improve prediction and understanding of thermal injury in this prostate cancer cell line, a first-order rate process model of injury accumulation (the Arrhenius model) was fit to the experimental results. The activation energy (E) obtained using the Arrhenius model for an injury criterion of 30 percent for all three assays revealed that the mechanism of thermal injury measured is likely different for each of the three assays: clonogenics (526.39 kJ/mole), PI (244.8 kJ/mole), and calcein (81.33 kJ/mole). Moreover, the sensitivity of the rate of injury accumulation dΩ/dt to temperature was highest for the clonogenic assay, lowest for calcein leakage, and intermediate for PI uptake, indicating the strong influence of E value on dΩ/dt. Since the clonogenic assay is linked to the ultimate survival of the cell and accounts for all lethal mechanisms of cellular injury, the E and A values obtained from clonogenic study are the best values to apply to predict thermal injury in cells. For higher temperatures (⩾50°C) indicative of thermal therapies, the results of PI uptake can be used as a conservative estimate of cell death (underprediction). This is useful until better experimental protocols are available to account for thermal transients at high temperature to assess clonogenic ability. These results provide further insights into the mechanisms of thermal injury in single cell systems and may be useful for designing optimal protocols for clinical thermal therapy. [S0148-0731(00)01301-7]

1.
American Cancer Society Statistics, 1996, Cancer Facts and Figures, American Cancer Society, Atlanta, GA.
2.
Lloyd
,
S. N.
,
Chalmers
,
D.
,
Leake
,
R. E.
, and
Kirk
,
D.
,
1992
, “
Local hyperthermia for prostatic disease: in vitro studies of human prostatic cancer cell lines
,”
Br. J. Urol.
,
70
, pp.
529
533
.
3.
Petrovich
,
Z.
,
Emami
,
B.
,
Kapp
,
D.
,
Sapozink
,
M. D.
,
Langholz
,
B.
,
Olesn
,
J.
,
Lieskovsky
,
G.
, and
Astrahan
,
M.
,
1991
, “
Regional hyperthermia in patients with recurrent genitourinary cancer
,”
Am. J. Clin. Oncol.
,
14-6
, pp.
472
477
.
4.
Mendecki
,
J.
,
Friedenthal
,
E.
,
Botstein
,
C.
,
Paglione
,
R.
, and
Sterzer
,
F.
,
1980
, “
Microwave applicators for localized hyperthermia treatment of cancer of the prostate
,”
Int. J. Radiat. Oncol., Biol., Phys.
,
6
, pp.
1583
1588
.
5.
Servadio
,
C.
, and
Leib
,
Z.
,
1991
, “
Local hyperthermia for prostate cancer
,”
Urology
,
34-4
, pp.
307
309
.
6.
Montrosi
,
F.
,
Guazzoni
,
G.
,
Colombo
,
R.
,
Galli
,
L.
,
Bergamschi
,
F.
, and
Rigatti
,
P.
,
1992
, “
Transrectal microwave hyperthermia for advanced prostate cancer: long-term clinical results
,”
The Journal of Urology
,
148
, pp.
342
345
.
7.
Stawartz
,
B.
,
Zielinski
,
H.
,
Szmigielski
,
S.
,
Rappaport
,
E.
,
Debicki
,
P.
, and
Petrovich
,
Z.
,
1993
, “
Transrectal hyperthermia as palliative treatment for advanced adenocarcinoma of prostate and studies of cell-mediated immunity
,”
Urology
,
41-6
, pp.
548
553
.
8.
Hall, E., 1994, “Hyperthermia,” in Radiobiology for the Radiologist, Lippincott, Philadelphia.
9.
Larson
,
T. R.
,
Bostwick
,
D. G.
, and
Corica
,
A.
,
1996
, “
Temperature-correlated histopathologic changes following microwave thermoablation of obstructive tissue in patients with benign prostatic hyperplasia
,”
Urology
,
47
, pp.
463
469
.
10.
Lim
,
L. M.
,
Ryan
,
T. P.
, and
Patel
,
A.
,
1996
, “
Factors influencing electrovaporization in the treatment of benign prostatic hyperplasia
,”
Biomedical Sciences Instrumentation
,
32
, pp.
197
204
.
11.
Rossi
,
S.
,
Fornari
,
F.
, and
Buscarini
,
L.
,
1993
, “
Percutaneous ultrasound guided radiofrequency electrocautery for the treatment of small hepatocellular carcinoma
,”
Journal of Interventional Radiology
,
8
, pp.
97
100
.
12.
Buscarini
,
L.
,
Rossi
,
S.
,
Fornari
,
F.
,
Stasi
,
M. D.
, and
Buscarini
,
E.
,
1995
, “
Laproscopic ablation of liver adenoma by radiofrequency electrocautery
,”
Gastrointest. Endosc.
,
41-1
, pp.
68
70
.
13.
Djavan
,
B.
,
Zlotta
,
A.
,
Susani
,
M.
,
Heinz
,
G.
,
Shariat
,
S.
,
Silverman
,
D.
,
Schulman
,
C.
, and
Marberger
,
M.
,
1997
, “
Transperineal radiofrequency interstitial tumor ablation of the prostate: Correlation of MRI with histopathologic examination
,”
Urology
,
50-6
, pp.
986
992
.
14.
Yatvin
,
M. B.
, and
Cramp
,
W. A.
,
1993
, “
Role of cellular membranes in hyperthermia: some observations and theories reviewed
,”
Int. J. Hyperthermia
,
9-2
, pp.
165
185
.
15.
Dewey, W. C., 1988, “Mechanisms of thermal injury and thermal sensitization,” in Hyperthermic Oncology, T. Sugahara and M. Saito, eds., Taylor and Francis, London, pp. 75–80.
16.
Roti Roti
,
J. L.
, and
Laszlo
,
A.
,
1988
, “
The effect of hyperthermia on cellular macromolecules
,”
Hyperthermia and Oncology
,
1
, pp.
13
56
.
17.
Leeper
,
D. B.
,
1985
, “
Molecular and cellular mechanisms of hyperthermia alone or combined with other modalities
,”
Hyperthermic Oncology
,
2
, pp.
9
40
.
18.
Puck
,
T. T.
, and
Marcus
,
P. I.
,
1956
, “
The action of x-rays on mammalian cells
,”
Journal of Experimental Medicine
,
10
, pp.
653
669
.
19.
Harris
,
M.
,
1966
, “
Criteria of viability in heat-treated cells
,”
Exp. Cell Res.
,
44
, pp.
658
661
.
20.
Mixter, G., Jr., Delhry, G. P., Derksen, W. L., and Monahan, T., 1963, “The influence of time on the death of HeLa cells at elevated temperature,” in: Temperature: Its Measurement and Control in Science and Industry, J. D. Hardy, ed., Vol. 3, Reinhold.
21.
Lin
,
P. S.
,
Kwock
,
L.
,
Hefter
,
K.
, and
Wallach
,
D. F.
,
1978
, “
Modification of rat thymocyte membrane properties by hyperthermia and ionizing radiation
,”
Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med.
,
33
, pp.
371
382
.
22.
Gerner
,
E. W.
,
Holmes
,
D. K.
,
Stickney
,
D. G.
,
Noterman
,
J. A.
, and
Fuller
,
D. J.
,
1980
, “
Enhancement of hyperthermia-induced cytotoxicity by polyamines
,”
Cancer Res.
,
40
, pp.
432
438
.
23.
Hayat
,
H.
, and
Friedberg
,
I.
,
1986
, “
Heat-induced alterations in cell membrane permeability and cell inactivation of transformed mouse fibroblasts
,”
Int. J. Hyperthermia
,
2
, pp.
369
378
.
24.
Anghileri
,
L. J.
, and
Robert
,
J.
,
1987
, “
Effects of hyperthermia and lanthanum on tumor cell leakage
,”
Int. J. Clin. Pharmacol. Ther. Toxicol.
,
25
, pp.
374
378
.
25.
Malyapa
,
R. S.
, and
Sawada
,
S.
,
1991
, “
Cell-cycle dependence of heat-induced interphase death in mouse L5178Y cells
,”
Radiat. Res.
,
125
, pp.
134
140
.
26.
Gaylor, D. C., 1990, “Electric field effects on isolated skeletal muscle cells,” Ph.D. thesis, Dept. of Electrical Engineering, MIT, Cambridge.
27.
Bischof
,
J. C.
,
Padanilam
,
J.
,
Holmes
,
W. H.
,
Ezzell
,
R. M.
,
Lee
,
R. C.
,
Tompkins
,
R. G.
,
Yarmush
,
M. L.
, and
Toner
,
M.
,
1995
, “
Dynamics of cell membrane permeability changes at supraphysiological temperatures
,”
Biophys. J.
,
68
, pp.
2608
2614
.
28.
Tomasovic
,
S. P.
,
Barta
,
M.
, and
Klostergaard
,
J.
,
1989
, “
Neutral red uptake and clonogenic survival assays of the hyperthermic sensitization of tumor cells to tumor necrosis factor
,”
Radiat. Res.
,
119
, pp.
325
337
.
29.
Fuse
,
T.
,
Yoon
,
K. W.
,
Kato
,
T.
, and
Yamada
,
K.
,
1998
, “
Heat-induced apoptosis in human glioblastoma cell line A172
,”
Neurosurgery
,
42
, pp.
843
849
.
30.
Nakayama
,
J.
,
Toshitani
,
A.
,
Hattori
,
T.
,
Moroi
,
Y.
, and
Hori
,
Y.
,
1993
, “
Augmentation of in vitro cytolytic activity of LAK cells with heated ATL-derived cell lines
,”
J. Dermatol.
,
20
, pp.
457
465
.
31.
Anghileri
,
L. J.
,
Marchal
,
C.
,
Matrat
,
M.
,
Crone-Escanye
,
M. C.
, and
Robert
,
J.
,
1986
, “
Hyperthermia inhibition of tumor cells growth in the presence of ruthenium red
,”
Neoplasma
,
33
, pp.
603
608
.
32.
Rice
,
G. C.
,
Fisher
,
G.
,
Devlin
,
M.
,
Humphries
,
G. M.
,
Qasim Mehdi
,
S.
, and
Hahn
,
G. M.
,
1985
, “
Use of N-sigma-dansyl-L-lysine and flow cytometry to identify heat-killed mammalian cells
,”
Int. J. Hyperthermia
,
1-2
, pp.
185
191
.
33.
Holahan
,
P. K.
,
Eagan
,
P.
, and
Meltz
,
M. L.
,
1991
, “
Hyperthermic effects on viability and growth kinetics of human lymphoblastoid cells
,”
Int. J. Hyperthermia
,
7
, pp.
849
856
.
34.
Zolzer
,
F.
,
Devi
,
P. U.
, and
Streffer
,
C.
,
1994
, “
Determination of potential doubling times in human melanoma cell cultures subjected to irradiation and/or hyperthermia by flow cytometry
,”
Radiat. Res.
,
138
, pp.
451
459
.
35.
Zamai
,
L.
,
Falcieri
,
E.
,
Marhefka
,
G.
, and
Vitale
,
M.
,
1996
, “
Supravital exposure to propidium iodide identifies apoptotic cells in the absence of nucleosomal DNA fragmentation
,”
Cytometry
,
23
, pp.
303
311
.
36.
Bowman
,
P. D.
,
Schuschereba
,
S. T.
,
Lawlor
,
D. F.
,
Gilligan
,
G. R.
,
Mata
,
J. R.
, and
DeBaere
,
D. R.
,
1997
, “
Survival of human epidermal keratinocytes after short-duration high temperature: synthesis of HSP70 and IL-8
,”
Am. J. Physiol.
,
272
, pp.
1988
1994
.
37.
Westra
,
A.
, and
Dewey
,
W. C.
,
1971
, “
Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro
,”
Int. J. Radiat. Biol.
,
19
, pp.
467
477
.
38.
Landry
,
J.
,
Bernier
,
J. P.
, and
Marceau
,
N.
,
1977
, “
Comparative evaluation of the mammalian cell thermal sensitivity to pulsed CO2-laser irradiation and hyperthermic water-bath treatment
,”
Radiat. Res.
,
71
(
1
), pp.
240
250
.
39.
Borrelli
,
M. J.
,
Thompson
,
L. L.
,
Cain
,
C. A.
, and
Dewey
,
W. C.
,
1990
, “
Time–temperature analysis of cell killing of BHK cells heated at temperatures in the range of 43.5 degrees C to 57.0 degrees C
,”
Int. J. Radiat. Oncol., Biol., Phys.
,
19-2
, pp.
389
399
.
40.
Isaacs
,
J. T.
,
Isaacs
,
W. B.
,
Feitz
,
W. F. J.
, and
Scheres
,
J.
,
1986
, “
Establishment and characterization of seven Dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostate cancers
,”
Prostate
,
9
, pp.
261
281
.
41.
Peschke
,
P.
,
Hahn
,
E. W.
,
Wolber
,
G.
,
Hildenbrand
,
D.
, and
Zuna
,
I.
,
1996
, “
Interstitial radiation and hyperthermia in the Dunning R3327 prostate tumor model: therapeutic efficacy depends on radiation dose-rate, sequence and frequency of heating
,”
Int. J. Radiat. Biol.
,
70-5
, pp.
609
616
.
42.
Bischof
,
J. C.
,
Smith
,
D. J.
,
Pazhayannur
,
P. V.
,
Manivel
,
C.
,
Hulbert
,
J.
, and
Roberts
,
K. P.
,
1997
, “
Cryosurgery of Dunning AT-1 rat prostate tumor: thermal, biophysical and viability response at the cellular and tissue level
,”
Cryobiology
,
34
, pp.
42
69
.
43.
Henriques
,
F. C.
, Jr.
,
1947
, “
Studies of thermal injury, V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury
,”
Arch. Pathol.
,
43
, pp.
489
502
.
44.
Cravalho, E. G., Toner, M., Gaylor, D. C., and Lee, R. C., 1992, “Response of cells to supraphysiological temperatures: experimental measurements and kinetic models,” in Electrical Trauma: The Pathophysiology, Manifestations and Clinical Management, R. C. Lee, E. G. Cravalho, and J. F. Burke, eds., Cambridge University Press.
45.
Diller
,
K. R.
,
1992
, “
Modeling of bioheat transfer processes at high and low temperature
,”
Adv. Heat Transfer
,
22
, pp.
157
346
.
46.
Johnson
,
H. A.
, and
Wiske
,
P. S.
,
1976
, “
Injury of the cell’s respiratory system by heat and by formaldehyde
,”
Lab Invest
,
35-2
, pp.
179
184
.
47.
Johnson, F. H., Eyring, H., and Stover, B. J., 1974, “Temperature,” in: The Theory of Rate Processes in Biology and Medicine, Wiley, New York.
48.
Sahu
,
S. K.
, and
Song
,
C. W.
,
1991
, “
Thermal sensitivity and kinetics of thermotolerance in bovine aortic endothelial cells in culture
,”
Int. J. Hyperthermia
,
7-1
, pp.
103
111
.
49.
Pearce, J., and Thomsen, S., 1995, “Rate process analysis of thermal damage,” in: Optical Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., Plenum Press, New York.
50.
Nias, A. H., 1990, “Intrinsic Radiosensitivity,” in: An Introduction to Radiobiology, Wiley, pp. 110–130.
51.
Wallen
,
C.
,
Higashikubo
,
R.
, and
Roti Roti
,
J.
,
1983
, “
Comparison of the cell kill measured by the Hoechst-propidium iodide flow cytometric assay and the colony formation assay
,”
Cell Tissue Kinet.
,
16
, pp.
357
365
.
52.
Benz
,
R.
,
1988
, “
Structural requirement for the rapid movement of charged molecules across membranes
,”
Biophys. J.
,
54
, pp.
25
33
.
53.
Padanilam
,
J.
,
Bischof
,
J. C.
,
Lee
,
R. C.
,
Cravalho
,
E. G.
,
Tompkins
,
R. G.
,
Yarmush
,
M. L.
, and
Toner
,
M.
,
1994
, “
Effectiveness of Poloxamer 188 in arresting calcein leakage from thermally damaged isolated skeletal muscle cells
,”
Ann. (N.Y.) Acad. Sci.
,
720
, pp.
111
123
.
54.
Tsong
,
T. Y.
,
1975
, “
Effect of phase transition on the kinetics of dye transport in phospholipid bilayer structures
,”
Biochemistry
,
14-25
, pp.
5409
5414
.
55.
Leith
,
J. T.
,
Miller
,
R. C.
,
Gerner
,
E.
, and
Boone
,
M.
,
1977
, “
Hyperthermic potentiation: biological aspects and application to radiation therapy
,”
Cancer
,
39
, pp.
776
779
.
56.
Raaphorst
,
G.
, and
Azzam
,
E.
,
1983
, “
Hyperthermia and thermal tolerance in normal and ataxia telagiectasia human cell strains
,”
Cancer Res.
,
43
, pp.
2618
2621
.
57.
Wahl
,
M. L.
,
Bobyock
,
S. B.
,
Leeper
,
D. B.
, and
Owen
,
C. S.
,
1997
, “
Effects of 42 degrees C hyperthermia on intracellular pH in ovarian carcinoma cells during acute or chronic exposure to low extracellular pH
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
39
, pp.
205
212
.
58.
Ketis
,
N. V.
,
Lawler
,
J.
, and
Bendena
,
W. G.
,
1993
, “
Extracellular matrix components affect the pattern of protein synthesis of endothelial cells responding to hyperthermia
,”
In Vitro Cell Dev. Biol. Anim.
,
29A
, pp.
768
772
.
59.
Lepock
,
J. R.
,
Cheng
,
K. H.
,
Al-Qysi
,
H.
, and
Kruuv
,
J.
,
1983
, “
Thermotropic lipid and protein transitions in Chinese hamster lung cell membranes: relationship to hyperthermic cell killing
,”
Can. J. Biochem. Cell Biol.
,
61-6
, pp.
421
427
.
60.
Lepock
,
J. R.
,
Frey
,
H. E.
, and
Ritchie
,
K. P.
,
1993
, “
Protein denaturation in intact hepatocytes and isolated cellular organelles during heat shock
,”
J. Cell Biol.
,
122-6
, pp.
1267
1276
.
61.
Vidair
,
C. A.
, and
Dewey
,
W. C.
,
1986
, “
Evaluation of a role for intracellular Na+, K+, Ca2+, and Mg2+ in hyperthermic cell killing
,”
Radiat. Res.
,
105-2
, pp.
187
200
.
62.
Yi
,
P. N.
,
Chang
,
C. S.
,
Tallen
,
M.
,
Bayer
,
W.
, and
Ball
,
S.
,
1983
, “
Hyperthermia-induced intracellular ionic level changes in tumor cells
,”
Radiat. Res.
,
93
, pp.
534
544
.
63.
Coss
,
R. A.
, and
Linnemans
,
W. A.
,
1996
, “
The effects of hyperthermia on the cytoskeleton: a review
,”
Int. J. Hyperthermia
,
12-2
, pp.
173
196
.
64.
Dermietzel
,
R.
, and
Streffer
,
C.
,
1992
, “
The cytoskeleton and proliferation of melanoma cells under hyperthermal conditions. A correlative double immunolabelling study
,”
Strahlenther. Onkol.
,
168-10
, pp.
593
602
.
You do not currently have access to this content.