A tensegrity structure composed of six struts interconnected with 24 elastic cables is used as a quantitative model of the steady-state elastic response of cells, with the struts and cables representing microtubules and actin filaments, respectively. The model is stretched uniaxially and the Young’s modulus E0 is obtained from the initial slope of the stress versus strain curve of an equivalent continuum. It is found that E0 is directly proportional to the pre-existing tension in the cables (or compression in the struts) and inversely proportional to the cable (or strut) length square. This relationship is used to predict the upper and lower bounds of E0 of cells, assuming that the cable tension equals the yield force of actin (∼400 pN) for the upper bound, and that the strut compression equals the critical buckling force of microtubules for the lower bound. The cable (or strut) length is determined from the assumption that model dimensions match the diameter of probes used in standard mechanical tests on cells. Predicted values are compared to reported data for the Young’s modulus of various cells. If the probe diameter is greater than or equal to 3 μm, these data are closer to the lower bound than to the upper bound. This, in turn, suggests that microtubules of the CSK carry initial compression that exceeds their critical buckling force (order of 100-101pN), but is much smaller than the yield force of actin. If the probe diameter is less than or equal to 2 μm, experimental data fall outside the region defined by the upper and lower bounds. [S0148-0731(00)00101-1]

1.
Ingber
,
D. E.
,
1993
, “
Cellular Tensegrity: Defining New Rules of Biological Design That Govern the Cytoskeleton
,”
J. Cell. Sci.
,
104
, pp.
613
627
.
2.
Hubmayr
,
R. D.
,
Shore
,
S. A.
,
Fredberg
,
J. J.
,
Planus
,
E.
,
Panettieri
,
R. A.
, Jr.
,
Moller
,
W.
,
Heyder
,
J.
, and
Wang
,
N.
,
1996
, “
Pharmacological Activation Changes Stiffness of Cultured Human Airway Smooth Muscle Cells
,”
Am. J. Physiol.
,
271
(also: Cell Physiology, 40), pp.
C1660-C1668
C1660-C1668
.
3.
Pourati
,
J.
,
Maniotis
,
A.
,
Spiegel
,
D.
,
Schaffer
,
J. L.
,
Butler
,
J. P.
,
Fredberg
,
J. J.
,
Ingber
,
D. E.
,
Stamenovic´
,
D.
, and
Wang
,
N.
1998
, “
Is Cytoskeletal Tension a Major Determinant of Cell Deformability in Adherent Endothelial Cells?
Am. J. Physiol.
,
274
(also: Cell Physiology, 43), pp.
1283
1289
.
4.
Stamenovic´
,
D.
,
Fredberg
,
J. J.
,
Wang
,
N.
,
Butler
,
J. P.
, and
Ingber
,
D. E.
,
1996
, “
A Microstructural Approach to Cytoskeletal Mechanics Based on Tensegrity
,”
J. Theor. Biol.
,
181
, pp.
125
136
.
5.
Coughlin
,
M. F.
, and
Stamenovic´
,
D.
,
1997
, “
A Tensegrity Structure With Buckling Compression Elements: Application to Cell Mechanics
,”
J. Appl. Mech.
,
64
, pp.
480
486
.
6.
Tsuda
,
Y.
,
Yasutake
,
H.
,
Ishijima
,
A.
, and
Yanagida
,
T.
,
1996
, “
Torsional Rigidity of Single Actin Filaments and Actin-Actin Bond Breaking Force under Torsion Measured Directly by in Vitro Micromanipulation
,”
Proc. Natl. Acad. Sci. USA
,
93
, pp.
12937
12942
.
7.
Gittes
,
F.
,
Mickey
,
B.
,
Nettleton
,
J.
, and
Howard
,
J.
,
1993
, “
Flexural Rigidity of Microtubules and Actin Filaments Measured From Thermal Fluctuations in Shape
,”
J. Cell Biol.
,
120
, pp.
923
934
.
8.
Wendling
,
S.
,
Oddou
,
C.
, and
Isabey
,
D.
,
1999
, “
Stiffening Response of a Cellular Tensegrity Model
,”
J. Theor. Biol.
,
196
, pp.
309
325
.
9.
Sato
,
M.
,
Ohshima
,
N.
, and
Nerem
,
R. M.
,
1996
, “
Viscoelastic Properties of Cultured Porcine Aortic Endothelial Cells Exposed to Shear Stress
,”
J. Biomech.
,
29
, pp.
461
467
.
10.
Petersen
,
N. O.
,
McConnaughey
,
W. B.
, and
Elson
,
E. L.
,
1982
, “
Dependence of Locally Measured Cellular Deformability on Position on the Cell, Temperature, and Cytochalasin B
,”
Proc. Natl. Acad. Sci. USA
,
79
, pp.
5327
5331
.
11.
Wang
,
N.
, and
Ingber
,
D. E.
,
1994
, “
Control of Cytoskeletal Mechanics by Extracellular Matrix, Cell Shape, and Mechanical Tension
,”
Biophys. J.
,
66
, pp.
2181
2189
.
12.
Wang
,
N.
, and
Ingber
,
D. E.
,
1995
, “
Probing Transmembrane Mechanical Coupling and Cytomechanics Using Magnetic Twisting Cytometry
,”
Biochem. Cell Biol.
,
73
, pp.
327
335
.
13.
Potard
,
U. S. B.
,
Butler
,
J. P.
, and
Wang
,
N.
,
1997
, “
Cytoskeletal Mechanics in Confluent Epithelial Cells Probed Through Integrins and E-Cadherins
,”
Am. J. Physiol.
,
272
(also: Cell Physiology, 41), pp.
C1654–C1663
C1654–C1663
.
14.
Kojima
,
H.
,
Ishijima
,
A.
, and
Yanagida
,
T.
,
1994
, “
Direct Measurement of Stiffness of Single Actin Filaments With and Without Tropomyosin by In Vivo Nanomanipulation
,”
Proc. Natl. Acad. Sci. USA
,
91
, pp.
12962
12966
.
15.
Satcher
,
R.
,
Dewey
,
C. F.
, Jr.
, and
Hartwig
,
J. H.
,
1997
, “
Mechanical Remodeling of the Endothelial Surface and Actin Cytoskeleton Induced by Fluid Flow
,”
Microcirculation
,
4
, pp.
439
453
.
16.
Discher
,
D. E.
,
Mohandas
,
N.
, and
Evans
,
E. A.
,
1994
, “
Molecular Maps of Red Cell Deformation: Hidden Elasticity and in Situ Connectivity
,”
Science
,
266
, pp.
1032
1035
.
17.
Janmey
,
P. A.
,
Euteneuer
,
U.
,
Traub
,
P.
, and
Schliwa
,
M.
,
1991
, “
Viscoelastic Properties of Vimentin Compared With Other Filamentous Biopolymer Networks
,”
J. Cell Biol.
,
113
, pp.
155
160
.
18.
Brodland
,
G. W.
, and
Gordon
,
R.
,
1990
, “
Intermediate Filaments May Prevent Buckling of Compressively Loaded Microtubules
,”
J. Biomech. Eng.
,
112
, pp.
319
321
.
19.
Kaech
,
S.
,
Ludin
,
B.
, and
Matus
,
A.
,
1996
, “
Cytoskeletal Plasticity in Cells Expressing Neuronal Microtubule-Associated Proteins
,”
Neuron
,
17
, pp.
1189
1199
.
20.
MacKintosh
,
F. C.
,
Ka¨s
,
J.
, and
Janmey
,
P. A.
,
1995
, “
Elasticity of Semiflexible Biopolymer Networks
,”
Phys. Rev. Lett.
,
75
, pp.
4425
4428
.
21.
Satcher
,
R. L.
, Jr.
, and
Dewey
,
C. F.
, Jr.
,
1996
, “
Theoretical Estimates of Mechanical Properties of the Endothelial Cell Cytoskeleton
,”
Biophys. J.
,
71
, pp.
109
118
.
22.
Duszyk
,
M.
,
Schwab
,
B.
, III
,
Zahalak
,
G. I.
,
Qian
,
H.
, and
Elson
,
E. L.
,
1989
, “
Cell Poking: Quantitative Analysis of Indentation of Thick Viscoelastic Layers
,”
Biophys. J.
,
55
, pp.
683
690
.
You do not currently have access to this content.